| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unopf1o | ⊢ ( 𝑇  ∈  UniOp  →  𝑇 :  ℋ –1-1-onto→  ℋ ) | 
						
							| 2 |  | f1of | ⊢ ( 𝑇 :  ℋ –1-1-onto→  ℋ  →  𝑇 :  ℋ ⟶  ℋ ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝑇  ∈  UniOp  →  𝑇 :  ℋ ⟶  ℋ ) | 
						
							| 4 |  | simplll | ⊢ ( ( ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  ∧  𝑧  ∈   ℋ )  ∧  𝑤  ∈   ℋ )  →  𝑇  ∈  UniOp ) | 
						
							| 5 |  | hvmulcl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ )  →  ( 𝑥  ·ℎ  𝑦 )  ∈   ℋ ) | 
						
							| 6 |  | hvaddcl | ⊢ ( ( ( 𝑥  ·ℎ  𝑦 )  ∈   ℋ  ∧  𝑧  ∈   ℋ )  →  ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 )  ∈   ℋ ) | 
						
							| 7 | 5 6 | sylan | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ )  ∧  𝑧  ∈   ℋ )  →  ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 )  ∈   ℋ ) | 
						
							| 8 | 7 | adantll | ⊢ ( ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  ∧  𝑧  ∈   ℋ )  →  ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 )  ∈   ℋ ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  ∧  𝑧  ∈   ℋ )  ∧  𝑤  ∈   ℋ )  →  ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 )  ∈   ℋ ) | 
						
							| 10 |  | simpr | ⊢ ( ( ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  ∧  𝑧  ∈   ℋ )  ∧  𝑤  ∈   ℋ )  →  𝑤  ∈   ℋ ) | 
						
							| 11 |  | unopadj | ⊢ ( ( 𝑇  ∈  UniOp  ∧  ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 )  ∈   ℋ  ∧  𝑤  ∈   ℋ )  →  ( ( 𝑇 ‘ ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 ) )  ·ih  𝑤 )  =  ( ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 )  ·ih  ( ◡ 𝑇 ‘ 𝑤 ) ) ) | 
						
							| 12 | 4 9 10 11 | syl3anc | ⊢ ( ( ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  ∧  𝑧  ∈   ℋ )  ∧  𝑤  ∈   ℋ )  →  ( ( 𝑇 ‘ ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 ) )  ·ih  𝑤 )  =  ( ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 )  ·ih  ( ◡ 𝑇 ‘ 𝑤 ) ) ) | 
						
							| 13 |  | simprl | ⊢ ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  →  𝑥  ∈  ℂ ) | 
						
							| 14 | 13 | ad2antrr | ⊢ ( ( ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  ∧  𝑧  ∈   ℋ )  ∧  𝑤  ∈   ℋ )  →  𝑥  ∈  ℂ ) | 
						
							| 15 |  | simprr | ⊢ ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  →  𝑦  ∈   ℋ ) | 
						
							| 16 | 15 | ad2antrr | ⊢ ( ( ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  ∧  𝑧  ∈   ℋ )  ∧  𝑤  ∈   ℋ )  →  𝑦  ∈   ℋ ) | 
						
							| 17 |  | simplr | ⊢ ( ( ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  ∧  𝑧  ∈   ℋ )  ∧  𝑤  ∈   ℋ )  →  𝑧  ∈   ℋ ) | 
						
							| 18 |  | cnvunop | ⊢ ( 𝑇  ∈  UniOp  →  ◡ 𝑇  ∈  UniOp ) | 
						
							| 19 |  | unopf1o | ⊢ ( ◡ 𝑇  ∈  UniOp  →  ◡ 𝑇 :  ℋ –1-1-onto→  ℋ ) | 
						
							| 20 |  | f1of | ⊢ ( ◡ 𝑇 :  ℋ –1-1-onto→  ℋ  →  ◡ 𝑇 :  ℋ ⟶  ℋ ) | 
						
							| 21 | 18 19 20 | 3syl | ⊢ ( 𝑇  ∈  UniOp  →  ◡ 𝑇 :  ℋ ⟶  ℋ ) | 
						
							| 22 | 21 | ffvelcdmda | ⊢ ( ( 𝑇  ∈  UniOp  ∧  𝑤  ∈   ℋ )  →  ( ◡ 𝑇 ‘ 𝑤 )  ∈   ℋ ) | 
						
							| 23 | 22 | adantlr | ⊢ ( ( ( 𝑇  ∈  UniOp  ∧  𝑧  ∈   ℋ )  ∧  𝑤  ∈   ℋ )  →  ( ◡ 𝑇 ‘ 𝑤 )  ∈   ℋ ) | 
						
							| 24 | 23 | adantllr | ⊢ ( ( ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  ∧  𝑧  ∈   ℋ )  ∧  𝑤  ∈   ℋ )  →  ( ◡ 𝑇 ‘ 𝑤 )  ∈   ℋ ) | 
						
							| 25 |  | hiassdi | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ )  ∧  ( 𝑧  ∈   ℋ  ∧  ( ◡ 𝑇 ‘ 𝑤 )  ∈   ℋ ) )  →  ( ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 )  ·ih  ( ◡ 𝑇 ‘ 𝑤 ) )  =  ( ( 𝑥  ·  ( 𝑦  ·ih  ( ◡ 𝑇 ‘ 𝑤 ) ) )  +  ( 𝑧  ·ih  ( ◡ 𝑇 ‘ 𝑤 ) ) ) ) | 
						
							| 26 | 14 16 17 24 25 | syl22anc | ⊢ ( ( ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  ∧  𝑧  ∈   ℋ )  ∧  𝑤  ∈   ℋ )  →  ( ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 )  ·ih  ( ◡ 𝑇 ‘ 𝑤 ) )  =  ( ( 𝑥  ·  ( 𝑦  ·ih  ( ◡ 𝑇 ‘ 𝑤 ) ) )  +  ( 𝑧  ·ih  ( ◡ 𝑇 ‘ 𝑤 ) ) ) ) | 
						
							| 27 | 3 | ffvelcdmda | ⊢ ( ( 𝑇  ∈  UniOp  ∧  𝑦  ∈   ℋ )  →  ( 𝑇 ‘ 𝑦 )  ∈   ℋ ) | 
						
							| 28 | 27 | adantrl | ⊢ ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  →  ( 𝑇 ‘ 𝑦 )  ∈   ℋ ) | 
						
							| 29 | 28 | ad2antrr | ⊢ ( ( ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  ∧  𝑧  ∈   ℋ )  ∧  𝑤  ∈   ℋ )  →  ( 𝑇 ‘ 𝑦 )  ∈   ℋ ) | 
						
							| 30 | 3 | ffvelcdmda | ⊢ ( ( 𝑇  ∈  UniOp  ∧  𝑧  ∈   ℋ )  →  ( 𝑇 ‘ 𝑧 )  ∈   ℋ ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( ( 𝑇  ∈  UniOp  ∧  𝑧  ∈   ℋ )  ∧  𝑤  ∈   ℋ )  →  ( 𝑇 ‘ 𝑧 )  ∈   ℋ ) | 
						
							| 32 | 31 | adantllr | ⊢ ( ( ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  ∧  𝑧  ∈   ℋ )  ∧  𝑤  ∈   ℋ )  →  ( 𝑇 ‘ 𝑧 )  ∈   ℋ ) | 
						
							| 33 |  | hiassdi | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( 𝑇 ‘ 𝑦 )  ∈   ℋ )  ∧  ( ( 𝑇 ‘ 𝑧 )  ∈   ℋ  ∧  𝑤  ∈   ℋ ) )  →  ( ( ( 𝑥  ·ℎ  ( 𝑇 ‘ 𝑦 ) )  +ℎ  ( 𝑇 ‘ 𝑧 ) )  ·ih  𝑤 )  =  ( ( 𝑥  ·  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑤 ) )  +  ( ( 𝑇 ‘ 𝑧 )  ·ih  𝑤 ) ) ) | 
						
							| 34 | 14 29 32 10 33 | syl22anc | ⊢ ( ( ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  ∧  𝑧  ∈   ℋ )  ∧  𝑤  ∈   ℋ )  →  ( ( ( 𝑥  ·ℎ  ( 𝑇 ‘ 𝑦 ) )  +ℎ  ( 𝑇 ‘ 𝑧 ) )  ·ih  𝑤 )  =  ( ( 𝑥  ·  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑤 ) )  +  ( ( 𝑇 ‘ 𝑧 )  ·ih  𝑤 ) ) ) | 
						
							| 35 |  | unopadj | ⊢ ( ( 𝑇  ∈  UniOp  ∧  𝑦  ∈   ℋ  ∧  𝑤  ∈   ℋ )  →  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑤 )  =  ( 𝑦  ·ih  ( ◡ 𝑇 ‘ 𝑤 ) ) ) | 
						
							| 36 | 35 | 3expa | ⊢ ( ( ( 𝑇  ∈  UniOp  ∧  𝑦  ∈   ℋ )  ∧  𝑤  ∈   ℋ )  →  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑤 )  =  ( 𝑦  ·ih  ( ◡ 𝑇 ‘ 𝑤 ) ) ) | 
						
							| 37 | 36 | oveq2d | ⊢ ( ( ( 𝑇  ∈  UniOp  ∧  𝑦  ∈   ℋ )  ∧  𝑤  ∈   ℋ )  →  ( 𝑥  ·  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑤 ) )  =  ( 𝑥  ·  ( 𝑦  ·ih  ( ◡ 𝑇 ‘ 𝑤 ) ) ) ) | 
						
							| 38 | 37 | adantlrl | ⊢ ( ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  ∧  𝑤  ∈   ℋ )  →  ( 𝑥  ·  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑤 ) )  =  ( 𝑥  ·  ( 𝑦  ·ih  ( ◡ 𝑇 ‘ 𝑤 ) ) ) ) | 
						
							| 39 | 38 | adantlr | ⊢ ( ( ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  ∧  𝑧  ∈   ℋ )  ∧  𝑤  ∈   ℋ )  →  ( 𝑥  ·  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑤 ) )  =  ( 𝑥  ·  ( 𝑦  ·ih  ( ◡ 𝑇 ‘ 𝑤 ) ) ) ) | 
						
							| 40 |  | unopadj | ⊢ ( ( 𝑇  ∈  UniOp  ∧  𝑧  ∈   ℋ  ∧  𝑤  ∈   ℋ )  →  ( ( 𝑇 ‘ 𝑧 )  ·ih  𝑤 )  =  ( 𝑧  ·ih  ( ◡ 𝑇 ‘ 𝑤 ) ) ) | 
						
							| 41 | 40 | 3expa | ⊢ ( ( ( 𝑇  ∈  UniOp  ∧  𝑧  ∈   ℋ )  ∧  𝑤  ∈   ℋ )  →  ( ( 𝑇 ‘ 𝑧 )  ·ih  𝑤 )  =  ( 𝑧  ·ih  ( ◡ 𝑇 ‘ 𝑤 ) ) ) | 
						
							| 42 | 41 | adantllr | ⊢ ( ( ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  ∧  𝑧  ∈   ℋ )  ∧  𝑤  ∈   ℋ )  →  ( ( 𝑇 ‘ 𝑧 )  ·ih  𝑤 )  =  ( 𝑧  ·ih  ( ◡ 𝑇 ‘ 𝑤 ) ) ) | 
						
							| 43 | 39 42 | oveq12d | ⊢ ( ( ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  ∧  𝑧  ∈   ℋ )  ∧  𝑤  ∈   ℋ )  →  ( ( 𝑥  ·  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑤 ) )  +  ( ( 𝑇 ‘ 𝑧 )  ·ih  𝑤 ) )  =  ( ( 𝑥  ·  ( 𝑦  ·ih  ( ◡ 𝑇 ‘ 𝑤 ) ) )  +  ( 𝑧  ·ih  ( ◡ 𝑇 ‘ 𝑤 ) ) ) ) | 
						
							| 44 | 34 43 | eqtr2d | ⊢ ( ( ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  ∧  𝑧  ∈   ℋ )  ∧  𝑤  ∈   ℋ )  →  ( ( 𝑥  ·  ( 𝑦  ·ih  ( ◡ 𝑇 ‘ 𝑤 ) ) )  +  ( 𝑧  ·ih  ( ◡ 𝑇 ‘ 𝑤 ) ) )  =  ( ( ( 𝑥  ·ℎ  ( 𝑇 ‘ 𝑦 ) )  +ℎ  ( 𝑇 ‘ 𝑧 ) )  ·ih  𝑤 ) ) | 
						
							| 45 | 12 26 44 | 3eqtrd | ⊢ ( ( ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  ∧  𝑧  ∈   ℋ )  ∧  𝑤  ∈   ℋ )  →  ( ( 𝑇 ‘ ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 ) )  ·ih  𝑤 )  =  ( ( ( 𝑥  ·ℎ  ( 𝑇 ‘ 𝑦 ) )  +ℎ  ( 𝑇 ‘ 𝑧 ) )  ·ih  𝑤 ) ) | 
						
							| 46 | 45 | ralrimiva | ⊢ ( ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  ∧  𝑧  ∈   ℋ )  →  ∀ 𝑤  ∈   ℋ ( ( 𝑇 ‘ ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 ) )  ·ih  𝑤 )  =  ( ( ( 𝑥  ·ℎ  ( 𝑇 ‘ 𝑦 ) )  +ℎ  ( 𝑇 ‘ 𝑧 ) )  ·ih  𝑤 ) ) | 
						
							| 47 |  | ffvelcdm | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 )  ∈   ℋ )  →  ( 𝑇 ‘ ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 ) )  ∈   ℋ ) | 
						
							| 48 | 7 47 | sylan2 | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ )  ∧  𝑧  ∈   ℋ ) )  →  ( 𝑇 ‘ ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 ) )  ∈   ℋ ) | 
						
							| 49 | 48 | anassrs | ⊢ ( ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  ∧  𝑧  ∈   ℋ )  →  ( 𝑇 ‘ ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 ) )  ∈   ℋ ) | 
						
							| 50 |  | ffvelcdm | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑦  ∈   ℋ )  →  ( 𝑇 ‘ 𝑦 )  ∈   ℋ ) | 
						
							| 51 |  | hvmulcl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( 𝑇 ‘ 𝑦 )  ∈   ℋ )  →  ( 𝑥  ·ℎ  ( 𝑇 ‘ 𝑦 ) )  ∈   ℋ ) | 
						
							| 52 | 50 51 | sylan2 | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑦  ∈   ℋ ) )  →  ( 𝑥  ·ℎ  ( 𝑇 ‘ 𝑦 ) )  ∈   ℋ ) | 
						
							| 53 | 52 | an12s | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  →  ( 𝑥  ·ℎ  ( 𝑇 ‘ 𝑦 ) )  ∈   ℋ ) | 
						
							| 54 | 53 | adantr | ⊢ ( ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  ∧  𝑧  ∈   ℋ )  →  ( 𝑥  ·ℎ  ( 𝑇 ‘ 𝑦 ) )  ∈   ℋ ) | 
						
							| 55 |  | ffvelcdm | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑧  ∈   ℋ )  →  ( 𝑇 ‘ 𝑧 )  ∈   ℋ ) | 
						
							| 56 | 55 | adantlr | ⊢ ( ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  ∧  𝑧  ∈   ℋ )  →  ( 𝑇 ‘ 𝑧 )  ∈   ℋ ) | 
						
							| 57 |  | hvaddcl | ⊢ ( ( ( 𝑥  ·ℎ  ( 𝑇 ‘ 𝑦 ) )  ∈   ℋ  ∧  ( 𝑇 ‘ 𝑧 )  ∈   ℋ )  →  ( ( 𝑥  ·ℎ  ( 𝑇 ‘ 𝑦 ) )  +ℎ  ( 𝑇 ‘ 𝑧 ) )  ∈   ℋ ) | 
						
							| 58 | 54 56 57 | syl2anc | ⊢ ( ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  ∧  𝑧  ∈   ℋ )  →  ( ( 𝑥  ·ℎ  ( 𝑇 ‘ 𝑦 ) )  +ℎ  ( 𝑇 ‘ 𝑧 ) )  ∈   ℋ ) | 
						
							| 59 |  | hial2eq | ⊢ ( ( ( 𝑇 ‘ ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 ) )  ∈   ℋ  ∧  ( ( 𝑥  ·ℎ  ( 𝑇 ‘ 𝑦 ) )  +ℎ  ( 𝑇 ‘ 𝑧 ) )  ∈   ℋ )  →  ( ∀ 𝑤  ∈   ℋ ( ( 𝑇 ‘ ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 ) )  ·ih  𝑤 )  =  ( ( ( 𝑥  ·ℎ  ( 𝑇 ‘ 𝑦 ) )  +ℎ  ( 𝑇 ‘ 𝑧 ) )  ·ih  𝑤 )  ↔  ( 𝑇 ‘ ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 ) )  =  ( ( 𝑥  ·ℎ  ( 𝑇 ‘ 𝑦 ) )  +ℎ  ( 𝑇 ‘ 𝑧 ) ) ) ) | 
						
							| 60 | 49 58 59 | syl2anc | ⊢ ( ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  ∧  𝑧  ∈   ℋ )  →  ( ∀ 𝑤  ∈   ℋ ( ( 𝑇 ‘ ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 ) )  ·ih  𝑤 )  =  ( ( ( 𝑥  ·ℎ  ( 𝑇 ‘ 𝑦 ) )  +ℎ  ( 𝑇 ‘ 𝑧 ) )  ·ih  𝑤 )  ↔  ( 𝑇 ‘ ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 ) )  =  ( ( 𝑥  ·ℎ  ( 𝑇 ‘ 𝑦 ) )  +ℎ  ( 𝑇 ‘ 𝑧 ) ) ) ) | 
						
							| 61 | 3 60 | sylanl1 | ⊢ ( ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  ∧  𝑧  ∈   ℋ )  →  ( ∀ 𝑤  ∈   ℋ ( ( 𝑇 ‘ ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 ) )  ·ih  𝑤 )  =  ( ( ( 𝑥  ·ℎ  ( 𝑇 ‘ 𝑦 ) )  +ℎ  ( 𝑇 ‘ 𝑧 ) )  ·ih  𝑤 )  ↔  ( 𝑇 ‘ ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 ) )  =  ( ( 𝑥  ·ℎ  ( 𝑇 ‘ 𝑦 ) )  +ℎ  ( 𝑇 ‘ 𝑧 ) ) ) ) | 
						
							| 62 | 46 61 | mpbid | ⊢ ( ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  ∧  𝑧  ∈   ℋ )  →  ( 𝑇 ‘ ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 ) )  =  ( ( 𝑥  ·ℎ  ( 𝑇 ‘ 𝑦 ) )  +ℎ  ( 𝑇 ‘ 𝑧 ) ) ) | 
						
							| 63 | 62 | ralrimiva | ⊢ ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  →  ∀ 𝑧  ∈   ℋ ( 𝑇 ‘ ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 ) )  =  ( ( 𝑥  ·ℎ  ( 𝑇 ‘ 𝑦 ) )  +ℎ  ( 𝑇 ‘ 𝑧 ) ) ) | 
						
							| 64 | 63 | ralrimivva | ⊢ ( 𝑇  ∈  UniOp  →  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈   ℋ ∀ 𝑧  ∈   ℋ ( 𝑇 ‘ ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 ) )  =  ( ( 𝑥  ·ℎ  ( 𝑇 ‘ 𝑦 ) )  +ℎ  ( 𝑇 ‘ 𝑧 ) ) ) | 
						
							| 65 |  | ellnop | ⊢ ( 𝑇  ∈  LinOp  ↔  ( 𝑇 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈   ℋ ∀ 𝑧  ∈   ℋ ( 𝑇 ‘ ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 ) )  =  ( ( 𝑥  ·ℎ  ( 𝑇 ‘ 𝑦 ) )  +ℎ  ( 𝑇 ‘ 𝑧 ) ) ) ) | 
						
							| 66 | 3 64 65 | sylanbrc | ⊢ ( 𝑇  ∈  UniOp  →  𝑇  ∈  LinOp ) |