| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unopf1o | ⊢ ( 𝑇  ∈  UniOp  →  𝑇 :  ℋ –1-1-onto→  ℋ ) | 
						
							| 2 |  | f1of | ⊢ ( 𝑇 :  ℋ –1-1-onto→  ℋ  →  𝑇 :  ℋ ⟶  ℋ ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝑇  ∈  UniOp  →  𝑇 :  ℋ ⟶  ℋ ) | 
						
							| 4 | 3 | ffvelcdmda | ⊢ ( ( 𝑇  ∈  UniOp  ∧  𝐴  ∈   ℋ )  →  ( 𝑇 ‘ 𝐴 )  ∈   ℋ ) | 
						
							| 5 |  | normcl | ⊢ ( ( 𝑇 ‘ 𝐴 )  ∈   ℋ  →  ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( 𝑇  ∈  UniOp  ∧  𝐴  ∈   ℋ )  →  ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 7 |  | normcl | ⊢ ( 𝐴  ∈   ℋ  →  ( normℎ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝑇  ∈  UniOp  ∧  𝐴  ∈   ℋ )  →  ( normℎ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 9 |  | normge0 | ⊢ ( ( 𝑇 ‘ 𝐴 )  ∈   ℋ  →  0  ≤  ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ) | 
						
							| 10 | 4 9 | syl | ⊢ ( ( 𝑇  ∈  UniOp  ∧  𝐴  ∈   ℋ )  →  0  ≤  ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ) | 
						
							| 11 |  | normge0 | ⊢ ( 𝐴  ∈   ℋ  →  0  ≤  ( normℎ ‘ 𝐴 ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝑇  ∈  UniOp  ∧  𝐴  ∈   ℋ )  →  0  ≤  ( normℎ ‘ 𝐴 ) ) | 
						
							| 13 |  | unop | ⊢ ( ( 𝑇  ∈  UniOp  ∧  𝐴  ∈   ℋ  ∧  𝐴  ∈   ℋ )  →  ( ( 𝑇 ‘ 𝐴 )  ·ih  ( 𝑇 ‘ 𝐴 ) )  =  ( 𝐴  ·ih  𝐴 ) ) | 
						
							| 14 | 13 | 3anidm23 | ⊢ ( ( 𝑇  ∈  UniOp  ∧  𝐴  ∈   ℋ )  →  ( ( 𝑇 ‘ 𝐴 )  ·ih  ( 𝑇 ‘ 𝐴 ) )  =  ( 𝐴  ·ih  𝐴 ) ) | 
						
							| 15 |  | normsq | ⊢ ( ( 𝑇 ‘ 𝐴 )  ∈   ℋ  →  ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ↑ 2 )  =  ( ( 𝑇 ‘ 𝐴 )  ·ih  ( 𝑇 ‘ 𝐴 ) ) ) | 
						
							| 16 | 4 15 | syl | ⊢ ( ( 𝑇  ∈  UniOp  ∧  𝐴  ∈   ℋ )  →  ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ↑ 2 )  =  ( ( 𝑇 ‘ 𝐴 )  ·ih  ( 𝑇 ‘ 𝐴 ) ) ) | 
						
							| 17 |  | normsq | ⊢ ( 𝐴  ∈   ℋ  →  ( ( normℎ ‘ 𝐴 ) ↑ 2 )  =  ( 𝐴  ·ih  𝐴 ) ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝑇  ∈  UniOp  ∧  𝐴  ∈   ℋ )  →  ( ( normℎ ‘ 𝐴 ) ↑ 2 )  =  ( 𝐴  ·ih  𝐴 ) ) | 
						
							| 19 | 14 16 18 | 3eqtr4d | ⊢ ( ( 𝑇  ∈  UniOp  ∧  𝐴  ∈   ℋ )  →  ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ↑ 2 )  =  ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 20 | 6 8 10 12 19 | sq11d | ⊢ ( ( 𝑇  ∈  UniOp  ∧  𝐴  ∈   ℋ )  →  ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) )  =  ( normℎ ‘ 𝐴 ) ) |