Step |
Hyp |
Ref |
Expression |
1 |
|
unsnen.1 |
⊢ 𝐴 ∈ V |
2 |
|
unsnen.2 |
⊢ 𝐵 ∈ V |
3 |
|
disjsn |
⊢ ( ( 𝐴 ∩ { 𝐵 } ) = ∅ ↔ ¬ 𝐵 ∈ 𝐴 ) |
4 |
|
cardon |
⊢ ( card ‘ 𝐴 ) ∈ On |
5 |
4
|
onordi |
⊢ Ord ( card ‘ 𝐴 ) |
6 |
|
orddisj |
⊢ ( Ord ( card ‘ 𝐴 ) → ( ( card ‘ 𝐴 ) ∩ { ( card ‘ 𝐴 ) } ) = ∅ ) |
7 |
5 6
|
ax-mp |
⊢ ( ( card ‘ 𝐴 ) ∩ { ( card ‘ 𝐴 ) } ) = ∅ |
8 |
1
|
cardid |
⊢ ( card ‘ 𝐴 ) ≈ 𝐴 |
9 |
8
|
ensymi |
⊢ 𝐴 ≈ ( card ‘ 𝐴 ) |
10 |
|
fvex |
⊢ ( card ‘ 𝐴 ) ∈ V |
11 |
|
en2sn |
⊢ ( ( 𝐵 ∈ V ∧ ( card ‘ 𝐴 ) ∈ V ) → { 𝐵 } ≈ { ( card ‘ 𝐴 ) } ) |
12 |
2 10 11
|
mp2an |
⊢ { 𝐵 } ≈ { ( card ‘ 𝐴 ) } |
13 |
|
unen |
⊢ ( ( ( 𝐴 ≈ ( card ‘ 𝐴 ) ∧ { 𝐵 } ≈ { ( card ‘ 𝐴 ) } ) ∧ ( ( 𝐴 ∩ { 𝐵 } ) = ∅ ∧ ( ( card ‘ 𝐴 ) ∩ { ( card ‘ 𝐴 ) } ) = ∅ ) ) → ( 𝐴 ∪ { 𝐵 } ) ≈ ( ( card ‘ 𝐴 ) ∪ { ( card ‘ 𝐴 ) } ) ) |
14 |
9 12 13
|
mpanl12 |
⊢ ( ( ( 𝐴 ∩ { 𝐵 } ) = ∅ ∧ ( ( card ‘ 𝐴 ) ∩ { ( card ‘ 𝐴 ) } ) = ∅ ) → ( 𝐴 ∪ { 𝐵 } ) ≈ ( ( card ‘ 𝐴 ) ∪ { ( card ‘ 𝐴 ) } ) ) |
15 |
7 14
|
mpan2 |
⊢ ( ( 𝐴 ∩ { 𝐵 } ) = ∅ → ( 𝐴 ∪ { 𝐵 } ) ≈ ( ( card ‘ 𝐴 ) ∪ { ( card ‘ 𝐴 ) } ) ) |
16 |
3 15
|
sylbir |
⊢ ( ¬ 𝐵 ∈ 𝐴 → ( 𝐴 ∪ { 𝐵 } ) ≈ ( ( card ‘ 𝐴 ) ∪ { ( card ‘ 𝐴 ) } ) ) |
17 |
|
df-suc |
⊢ suc ( card ‘ 𝐴 ) = ( ( card ‘ 𝐴 ) ∪ { ( card ‘ 𝐴 ) } ) |
18 |
16 17
|
breqtrrdi |
⊢ ( ¬ 𝐵 ∈ 𝐴 → ( 𝐴 ∪ { 𝐵 } ) ≈ suc ( card ‘ 𝐴 ) ) |