Step |
Hyp |
Ref |
Expression |
1 |
|
dfss2 |
⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ 𝐶 ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) → 𝑥 ∈ 𝐶 ) ) |
2 |
|
19.26 |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) ) ↔ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) ) ) |
3 |
|
elunant |
⊢ ( ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) → 𝑥 ∈ 𝐶 ) ↔ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) ) ) |
4 |
3
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) → 𝑥 ∈ 𝐶 ) ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) ) ) |
5 |
|
dfss2 |
⊢ ( 𝐴 ⊆ 𝐶 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) |
6 |
|
dfss2 |
⊢ ( 𝐵 ⊆ 𝐶 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) ) |
7 |
5 6
|
anbi12i |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ↔ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) ) ) |
8 |
2 4 7
|
3bitr4i |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) → 𝑥 ∈ 𝐶 ) ↔ ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ) |
9 |
1 8
|
bitr2i |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ↔ ( 𝐴 ∪ 𝐵 ) ⊆ 𝐶 ) |