Description: Subclass law for union of classes. (Contributed by NM, 14-Oct-1999) (Proof shortened by Andrew Salmon, 26-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | unss1 | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∪ 𝐶 ) ⊆ ( 𝐵 ∪ 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
2 | 1 | orim1d | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶 ) ) ) |
3 | elun | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶 ) ) | |
4 | elun | ⊢ ( 𝑥 ∈ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶 ) ) | |
5 | 2 3 4 | 3imtr4g | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 ∈ ( 𝐴 ∪ 𝐶 ) → 𝑥 ∈ ( 𝐵 ∪ 𝐶 ) ) ) |
6 | 5 | ssrdv | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∪ 𝐶 ) ⊆ ( 𝐵 ∪ 𝐶 ) ) |