Metamath Proof Explorer


Theorem unssbd

Description: If ( A u. B ) is contained in C , so is B . One-way deduction form of unss . Partial converse of unssd . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypothesis unssad.1 ( 𝜑 → ( 𝐴𝐵 ) ⊆ 𝐶 )
Assertion unssbd ( 𝜑𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 unssad.1 ( 𝜑 → ( 𝐴𝐵 ) ⊆ 𝐶 )
2 unss ( ( 𝐴𝐶𝐵𝐶 ) ↔ ( 𝐴𝐵 ) ⊆ 𝐶 )
3 1 2 sylibr ( 𝜑 → ( 𝐴𝐶𝐵𝐶 ) )
4 3 simprd ( 𝜑𝐵𝐶 )