Metamath Proof Explorer
Description: An inference showing the union of two subclasses is a subclass.
(Contributed by Raph Levien, 10-Dec-2002)
|
|
Ref |
Expression |
|
Hypotheses |
unssi.1 |
⊢ 𝐴 ⊆ 𝐶 |
|
|
unssi.2 |
⊢ 𝐵 ⊆ 𝐶 |
|
Assertion |
unssi |
⊢ ( 𝐴 ∪ 𝐵 ) ⊆ 𝐶 |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unssi.1 |
⊢ 𝐴 ⊆ 𝐶 |
| 2 |
|
unssi.2 |
⊢ 𝐵 ⊆ 𝐶 |
| 3 |
1 2
|
pm3.2i |
⊢ ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) |
| 4 |
|
unss |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ↔ ( 𝐴 ∪ 𝐵 ) ⊆ 𝐶 ) |
| 5 |
3 4
|
mpbi |
⊢ ( 𝐴 ∪ 𝐵 ) ⊆ 𝐶 |