| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-tr |
⊢ ( Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴 ) |
| 2 |
|
ssralv |
⊢ ( ∪ 𝐴 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ∀ 𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ 𝑥 ) ) |
| 3 |
1 2
|
sylbi |
⊢ ( Tr 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ∀ 𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ 𝑥 ) ) |
| 4 |
|
elequ1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) |
| 5 |
|
elequ2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦 ) ) |
| 6 |
4 5
|
bitrd |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦 ) ) |
| 7 |
6
|
notbid |
⊢ ( 𝑥 = 𝑦 → ( ¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝑦 ∈ 𝑦 ) ) |
| 8 |
7
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀ 𝑦 ∈ ∪ 𝐴 ¬ 𝑦 ∈ 𝑦 ) |
| 9 |
|
untuni |
⊢ ( ∀ 𝑦 ∈ ∪ 𝐴 ¬ 𝑦 ∈ 𝑦 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 ) |
| 10 |
8 9
|
bitri |
⊢ ( ∀ 𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 ) |
| 11 |
3 10
|
imbitrdi |
⊢ ( Tr 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 ) ) |
| 12 |
|
untelirr |
⊢ ( ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥 ) |
| 13 |
12
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 → ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 ) |
| 14 |
11 13
|
impbid1 |
⊢ ( Tr 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 ) ) |