Metamath Proof Explorer


Theorem unundi

Description: Union distributes over itself. (Contributed by NM, 17-Aug-2004)

Ref Expression
Assertion unundi ( 𝐴 ∪ ( 𝐵𝐶 ) ) = ( ( 𝐴𝐵 ) ∪ ( 𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 unidm ( 𝐴𝐴 ) = 𝐴
2 1 uneq1i ( ( 𝐴𝐴 ) ∪ ( 𝐵𝐶 ) ) = ( 𝐴 ∪ ( 𝐵𝐶 ) )
3 un4 ( ( 𝐴𝐴 ) ∪ ( 𝐵𝐶 ) ) = ( ( 𝐴𝐵 ) ∪ ( 𝐴𝐶 ) )
4 2 3 eqtr3i ( 𝐴 ∪ ( 𝐵𝐶 ) ) = ( ( 𝐴𝐵 ) ∪ ( 𝐴𝐶 ) )