Description: The union of a class and its complement is the universe. Theorem 5.1(5) of Stoll p. 17. (Contributed by NM, 17-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unvdif | ⊢ ( 𝐴 ∪ ( V ∖ 𝐴 ) ) = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfun3 | ⊢ ( 𝐴 ∪ ( V ∖ 𝐴 ) ) = ( V ∖ ( ( V ∖ 𝐴 ) ∩ ( V ∖ ( V ∖ 𝐴 ) ) ) ) | |
| 2 | disjdif | ⊢ ( ( V ∖ 𝐴 ) ∩ ( V ∖ ( V ∖ 𝐴 ) ) ) = ∅ | |
| 3 | 2 | difeq2i | ⊢ ( V ∖ ( ( V ∖ 𝐴 ) ∩ ( V ∖ ( V ∖ 𝐴 ) ) ) ) = ( V ∖ ∅ ) |
| 4 | dif0 | ⊢ ( V ∖ ∅ ) = V | |
| 5 | 1 3 4 | 3eqtri | ⊢ ( 𝐴 ∪ ( V ∖ 𝐴 ) ) = V |