Metamath Proof Explorer


Theorem unvdif

Description: The union of a class and its complement is the universe. Theorem 5.1(5) of Stoll p. 17. (Contributed by NM, 17-Aug-2004)

Ref Expression
Assertion unvdif ( 𝐴 ∪ ( V ∖ 𝐴 ) ) = V

Proof

Step Hyp Ref Expression
1 dfun3 ( 𝐴 ∪ ( V ∖ 𝐴 ) ) = ( V ∖ ( ( V ∖ 𝐴 ) ∩ ( V ∖ ( V ∖ 𝐴 ) ) ) )
2 disjdif ( ( V ∖ 𝐴 ) ∩ ( V ∖ ( V ∖ 𝐴 ) ) ) = ∅
3 2 difeq2i ( V ∖ ( ( V ∖ 𝐴 ) ∩ ( V ∖ ( V ∖ 𝐴 ) ) ) ) = ( V ∖ ∅ )
4 dif0 ( V ∖ ∅ ) = V
5 1 3 4 3eqtri ( 𝐴 ∪ ( V ∖ 𝐴 ) ) = V