Step |
Hyp |
Ref |
Expression |
1 |
|
brwdom3i |
⊢ ( 𝐴 ≼* 𝐵 → ∃ 𝑓 ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ) |
2 |
1
|
3ad2ant1 |
⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ∃ 𝑓 ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ) |
3 |
|
brwdom3i |
⊢ ( 𝐶 ≼* 𝐷 → ∃ 𝑔 ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ) |
4 |
3
|
3ad2ant2 |
⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ∃ 𝑔 ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ) |
5 |
4
|
adantr |
⊢ ( ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) ∧ ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ) → ∃ 𝑔 ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ) |
6 |
|
relwdom |
⊢ Rel ≼* |
7 |
6
|
brrelex1i |
⊢ ( 𝐴 ≼* 𝐵 → 𝐴 ∈ V ) |
8 |
6
|
brrelex1i |
⊢ ( 𝐶 ≼* 𝐷 → 𝐶 ∈ V ) |
9 |
|
unexg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐴 ∪ 𝐶 ) ∈ V ) |
10 |
7 8 9
|
syl2an |
⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ) → ( 𝐴 ∪ 𝐶 ) ∈ V ) |
11 |
10
|
3adant3 |
⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝐴 ∪ 𝐶 ) ∈ V ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) ∧ ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ) ) → ( 𝐴 ∪ 𝐶 ) ∈ V ) |
13 |
6
|
brrelex2i |
⊢ ( 𝐴 ≼* 𝐵 → 𝐵 ∈ V ) |
14 |
6
|
brrelex2i |
⊢ ( 𝐶 ≼* 𝐷 → 𝐷 ∈ V ) |
15 |
|
unexg |
⊢ ( ( 𝐵 ∈ V ∧ 𝐷 ∈ V ) → ( 𝐵 ∪ 𝐷 ) ∈ V ) |
16 |
13 14 15
|
syl2an |
⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ) → ( 𝐵 ∪ 𝐷 ) ∈ V ) |
17 |
16
|
3adant3 |
⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝐵 ∪ 𝐷 ) ∈ V ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) ∧ ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ) ) → ( 𝐵 ∪ 𝐷 ) ∈ V ) |
19 |
|
elun |
⊢ ( 𝑦 ∈ ( 𝐴 ∪ 𝐶 ) ↔ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐶 ) ) |
20 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑦 → ( 𝑎 = ( 𝑓 ‘ 𝑏 ) ↔ 𝑦 = ( 𝑓 ‘ 𝑏 ) ) ) |
21 |
20
|
rexbidv |
⊢ ( 𝑎 = 𝑦 → ( ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ↔ ∃ 𝑏 ∈ 𝐵 𝑦 = ( 𝑓 ‘ 𝑏 ) ) ) |
22 |
21
|
rspcva |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ) → ∃ 𝑏 ∈ 𝐵 𝑦 = ( 𝑓 ‘ 𝑏 ) ) |
23 |
|
fveq2 |
⊢ ( 𝑏 = 𝑧 → ( 𝑓 ‘ 𝑏 ) = ( 𝑓 ‘ 𝑧 ) ) |
24 |
23
|
eqeq2d |
⊢ ( 𝑏 = 𝑧 → ( 𝑦 = ( 𝑓 ‘ 𝑏 ) ↔ 𝑦 = ( 𝑓 ‘ 𝑧 ) ) ) |
25 |
24
|
cbvrexvw |
⊢ ( ∃ 𝑏 ∈ 𝐵 𝑦 = ( 𝑓 ‘ 𝑏 ) ↔ ∃ 𝑧 ∈ 𝐵 𝑦 = ( 𝑓 ‘ 𝑧 ) ) |
26 |
|
ssun1 |
⊢ 𝐵 ⊆ ( 𝐵 ∪ 𝐷 ) |
27 |
|
iftrue |
⊢ ( 𝑧 ∈ 𝐵 → if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) = 𝑓 ) |
28 |
27
|
fveq1d |
⊢ ( 𝑧 ∈ 𝐵 → ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) = ( 𝑓 ‘ 𝑧 ) ) |
29 |
28
|
eqeq2d |
⊢ ( 𝑧 ∈ 𝐵 → ( 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ↔ 𝑦 = ( 𝑓 ‘ 𝑧 ) ) ) |
30 |
29
|
biimprd |
⊢ ( 𝑧 ∈ 𝐵 → ( 𝑦 = ( 𝑓 ‘ 𝑧 ) → 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) ) |
31 |
30
|
reximia |
⊢ ( ∃ 𝑧 ∈ 𝐵 𝑦 = ( 𝑓 ‘ 𝑧 ) → ∃ 𝑧 ∈ 𝐵 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) |
32 |
|
ssrexv |
⊢ ( 𝐵 ⊆ ( 𝐵 ∪ 𝐷 ) → ( ∃ 𝑧 ∈ 𝐵 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) ) |
33 |
26 31 32
|
mpsyl |
⊢ ( ∃ 𝑧 ∈ 𝐵 𝑦 = ( 𝑓 ‘ 𝑧 ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) |
34 |
25 33
|
sylbi |
⊢ ( ∃ 𝑏 ∈ 𝐵 𝑦 = ( 𝑓 ‘ 𝑏 ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) |
35 |
22 34
|
syl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) |
36 |
35
|
ancoms |
⊢ ( ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ 𝑦 ∈ 𝐴 ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) |
37 |
36
|
adantlr |
⊢ ( ( ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ) ∧ 𝑦 ∈ 𝐴 ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) |
38 |
37
|
adantll |
⊢ ( ( ( ( 𝐵 ∩ 𝐷 ) = ∅ ∧ ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) |
39 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑦 → ( 𝑎 = ( 𝑔 ‘ 𝑏 ) ↔ 𝑦 = ( 𝑔 ‘ 𝑏 ) ) ) |
40 |
39
|
rexbidv |
⊢ ( 𝑎 = 𝑦 → ( ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ↔ ∃ 𝑏 ∈ 𝐷 𝑦 = ( 𝑔 ‘ 𝑏 ) ) ) |
41 |
|
fveq2 |
⊢ ( 𝑏 = 𝑧 → ( 𝑔 ‘ 𝑏 ) = ( 𝑔 ‘ 𝑧 ) ) |
42 |
41
|
eqeq2d |
⊢ ( 𝑏 = 𝑧 → ( 𝑦 = ( 𝑔 ‘ 𝑏 ) ↔ 𝑦 = ( 𝑔 ‘ 𝑧 ) ) ) |
43 |
42
|
cbvrexvw |
⊢ ( ∃ 𝑏 ∈ 𝐷 𝑦 = ( 𝑔 ‘ 𝑏 ) ↔ ∃ 𝑧 ∈ 𝐷 𝑦 = ( 𝑔 ‘ 𝑧 ) ) |
44 |
40 43
|
bitrdi |
⊢ ( 𝑎 = 𝑦 → ( ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ↔ ∃ 𝑧 ∈ 𝐷 𝑦 = ( 𝑔 ‘ 𝑧 ) ) ) |
45 |
44
|
rspccva |
⊢ ( ( ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ∧ 𝑦 ∈ 𝐶 ) → ∃ 𝑧 ∈ 𝐷 𝑦 = ( 𝑔 ‘ 𝑧 ) ) |
46 |
|
ssun2 |
⊢ 𝐷 ⊆ ( 𝐵 ∪ 𝐷 ) |
47 |
|
minel |
⊢ ( ( 𝑧 ∈ 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ¬ 𝑧 ∈ 𝐵 ) |
48 |
47
|
ancoms |
⊢ ( ( ( 𝐵 ∩ 𝐷 ) = ∅ ∧ 𝑧 ∈ 𝐷 ) → ¬ 𝑧 ∈ 𝐵 ) |
49 |
48
|
iffalsed |
⊢ ( ( ( 𝐵 ∩ 𝐷 ) = ∅ ∧ 𝑧 ∈ 𝐷 ) → if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) = 𝑔 ) |
50 |
49
|
fveq1d |
⊢ ( ( ( 𝐵 ∩ 𝐷 ) = ∅ ∧ 𝑧 ∈ 𝐷 ) → ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) = ( 𝑔 ‘ 𝑧 ) ) |
51 |
50
|
eqeq2d |
⊢ ( ( ( 𝐵 ∩ 𝐷 ) = ∅ ∧ 𝑧 ∈ 𝐷 ) → ( 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ↔ 𝑦 = ( 𝑔 ‘ 𝑧 ) ) ) |
52 |
51
|
biimprd |
⊢ ( ( ( 𝐵 ∩ 𝐷 ) = ∅ ∧ 𝑧 ∈ 𝐷 ) → ( 𝑦 = ( 𝑔 ‘ 𝑧 ) → 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) ) |
53 |
52
|
reximdva |
⊢ ( ( 𝐵 ∩ 𝐷 ) = ∅ → ( ∃ 𝑧 ∈ 𝐷 𝑦 = ( 𝑔 ‘ 𝑧 ) → ∃ 𝑧 ∈ 𝐷 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) ) |
54 |
53
|
imp |
⊢ ( ( ( 𝐵 ∩ 𝐷 ) = ∅ ∧ ∃ 𝑧 ∈ 𝐷 𝑦 = ( 𝑔 ‘ 𝑧 ) ) → ∃ 𝑧 ∈ 𝐷 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) |
55 |
|
ssrexv |
⊢ ( 𝐷 ⊆ ( 𝐵 ∪ 𝐷 ) → ( ∃ 𝑧 ∈ 𝐷 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) ) |
56 |
46 54 55
|
mpsyl |
⊢ ( ( ( 𝐵 ∩ 𝐷 ) = ∅ ∧ ∃ 𝑧 ∈ 𝐷 𝑦 = ( 𝑔 ‘ 𝑧 ) ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) |
57 |
45 56
|
sylan2 |
⊢ ( ( ( 𝐵 ∩ 𝐷 ) = ∅ ∧ ( ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ∧ 𝑦 ∈ 𝐶 ) ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) |
58 |
57
|
anassrs |
⊢ ( ( ( ( 𝐵 ∩ 𝐷 ) = ∅ ∧ ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ) ∧ 𝑦 ∈ 𝐶 ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) |
59 |
58
|
adantlrl |
⊢ ( ( ( ( 𝐵 ∩ 𝐷 ) = ∅ ∧ ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ) ) ∧ 𝑦 ∈ 𝐶 ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) |
60 |
38 59
|
jaodan |
⊢ ( ( ( ( 𝐵 ∩ 𝐷 ) = ∅ ∧ ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ) ) ∧ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐶 ) ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) |
61 |
19 60
|
sylan2b |
⊢ ( ( ( ( 𝐵 ∩ 𝐷 ) = ∅ ∧ ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ) ) ∧ 𝑦 ∈ ( 𝐴 ∪ 𝐶 ) ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) |
62 |
61
|
expl |
⊢ ( ( 𝐵 ∩ 𝐷 ) = ∅ → ( ( ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ) ∧ 𝑦 ∈ ( 𝐴 ∪ 𝐶 ) ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) ) |
63 |
62
|
3ad2ant3 |
⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( ( ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ) ∧ 𝑦 ∈ ( 𝐴 ∪ 𝐶 ) ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) ) |
64 |
63
|
impl |
⊢ ( ( ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) ∧ ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ) ) ∧ 𝑦 ∈ ( 𝐴 ∪ 𝐶 ) ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) |
65 |
12 18 64
|
wdom2d |
⊢ ( ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) ∧ ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ) ) → ( 𝐴 ∪ 𝐶 ) ≼* ( 𝐵 ∪ 𝐷 ) ) |
66 |
65
|
expr |
⊢ ( ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) ∧ ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ) → ( ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) → ( 𝐴 ∪ 𝐶 ) ≼* ( 𝐵 ∪ 𝐷 ) ) ) |
67 |
66
|
exlimdv |
⊢ ( ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) ∧ ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ) → ( ∃ 𝑔 ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) → ( 𝐴 ∪ 𝐶 ) ≼* ( 𝐵 ∪ 𝐷 ) ) ) |
68 |
5 67
|
mpd |
⊢ ( ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) ∧ ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ) → ( 𝐴 ∪ 𝐶 ) ≼* ( 𝐵 ∪ 𝐷 ) ) |
69 |
2 68
|
exlimddv |
⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝐴 ∪ 𝐶 ) ≼* ( 𝐵 ∪ 𝐷 ) ) |