| Step | Hyp | Ref | Expression | 
						
							| 1 |  | r1rankidb | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  𝐴  ⊆  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  𝐴  ⊆  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) | 
						
							| 3 |  | ssun1 | ⊢ ( rank ‘ 𝐴 )  ⊆  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) | 
						
							| 4 |  | rankdmr1 | ⊢ ( rank ‘ 𝐴 )  ∈  dom  𝑅1 | 
						
							| 5 |  | r1funlim | ⊢ ( Fun  𝑅1  ∧  Lim  dom  𝑅1 ) | 
						
							| 6 | 5 | simpri | ⊢ Lim  dom  𝑅1 | 
						
							| 7 |  | limord | ⊢ ( Lim  dom  𝑅1  →  Ord  dom  𝑅1 ) | 
						
							| 8 | 6 7 | ax-mp | ⊢ Ord  dom  𝑅1 | 
						
							| 9 |  | rankdmr1 | ⊢ ( rank ‘ 𝐵 )  ∈  dom  𝑅1 | 
						
							| 10 |  | ordunel | ⊢ ( ( Ord  dom  𝑅1  ∧  ( rank ‘ 𝐴 )  ∈  dom  𝑅1  ∧  ( rank ‘ 𝐵 )  ∈  dom  𝑅1 )  →  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) )  ∈  dom  𝑅1 ) | 
						
							| 11 | 8 4 9 10 | mp3an | ⊢ ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) )  ∈  dom  𝑅1 | 
						
							| 12 |  | r1ord3g | ⊢ ( ( ( rank ‘ 𝐴 )  ∈  dom  𝑅1  ∧  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) )  ∈  dom  𝑅1 )  →  ( ( rank ‘ 𝐴 )  ⊆  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) )  →  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) )  ⊆  ( 𝑅1 ‘ ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) ) ) | 
						
							| 13 | 4 11 12 | mp2an | ⊢ ( ( rank ‘ 𝐴 )  ⊆  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) )  →  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) )  ⊆  ( 𝑅1 ‘ ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) ) | 
						
							| 14 | 3 13 | ax-mp | ⊢ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) )  ⊆  ( 𝑅1 ‘ ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) | 
						
							| 15 | 2 14 | sstrdi | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  𝐴  ⊆  ( 𝑅1 ‘ ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) ) | 
						
							| 16 |  | r1rankidb | ⊢ ( 𝐵  ∈  ∪  ( 𝑅1  “  On )  →  𝐵  ⊆  ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  𝐵  ⊆  ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ) | 
						
							| 18 |  | ssun2 | ⊢ ( rank ‘ 𝐵 )  ⊆  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) | 
						
							| 19 |  | r1ord3g | ⊢ ( ( ( rank ‘ 𝐵 )  ∈  dom  𝑅1  ∧  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) )  ∈  dom  𝑅1 )  →  ( ( rank ‘ 𝐵 )  ⊆  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) )  →  ( 𝑅1 ‘ ( rank ‘ 𝐵 ) )  ⊆  ( 𝑅1 ‘ ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) ) ) | 
						
							| 20 | 9 11 19 | mp2an | ⊢ ( ( rank ‘ 𝐵 )  ⊆  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) )  →  ( 𝑅1 ‘ ( rank ‘ 𝐵 ) )  ⊆  ( 𝑅1 ‘ ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) ) | 
						
							| 21 | 18 20 | ax-mp | ⊢ ( 𝑅1 ‘ ( rank ‘ 𝐵 ) )  ⊆  ( 𝑅1 ‘ ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) | 
						
							| 22 | 17 21 | sstrdi | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  𝐵  ⊆  ( 𝑅1 ‘ ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) ) | 
						
							| 23 | 15 22 | unssd | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  ( 𝐴  ∪  𝐵 )  ⊆  ( 𝑅1 ‘ ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) ) | 
						
							| 24 |  | fvex | ⊢ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) )  ∈  V | 
						
							| 25 | 24 | elpw2 | ⊢ ( ( 𝐴  ∪  𝐵 )  ∈  𝒫  ( 𝑅1 ‘ ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) )  ↔  ( 𝐴  ∪  𝐵 )  ⊆  ( 𝑅1 ‘ ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) ) | 
						
							| 26 | 23 25 | sylibr | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  ( 𝐴  ∪  𝐵 )  ∈  𝒫  ( 𝑅1 ‘ ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) ) | 
						
							| 27 |  | r1sucg | ⊢ ( ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) )  ∈  dom  𝑅1  →  ( 𝑅1 ‘ suc  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) )  =  𝒫  ( 𝑅1 ‘ ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) ) | 
						
							| 28 | 11 27 | ax-mp | ⊢ ( 𝑅1 ‘ suc  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) )  =  𝒫  ( 𝑅1 ‘ ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) | 
						
							| 29 | 26 28 | eleqtrrdi | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  ( 𝐴  ∪  𝐵 )  ∈  ( 𝑅1 ‘ suc  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) ) | 
						
							| 30 |  | r1elwf | ⊢ ( ( 𝐴  ∪  𝐵 )  ∈  ( 𝑅1 ‘ suc  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) )  →  ( 𝐴  ∪  𝐵 )  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 31 | 29 30 | syl | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  ( 𝐴  ∪  𝐵 )  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 32 |  | ssun1 | ⊢ 𝐴  ⊆  ( 𝐴  ∪  𝐵 ) | 
						
							| 33 |  | sswf | ⊢ ( ( ( 𝐴  ∪  𝐵 )  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐴  ⊆  ( 𝐴  ∪  𝐵 ) )  →  𝐴  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 34 | 32 33 | mpan2 | ⊢ ( ( 𝐴  ∪  𝐵 )  ∈  ∪  ( 𝑅1  “  On )  →  𝐴  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 35 |  | ssun2 | ⊢ 𝐵  ⊆  ( 𝐴  ∪  𝐵 ) | 
						
							| 36 |  | sswf | ⊢ ( ( ( 𝐴  ∪  𝐵 )  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ⊆  ( 𝐴  ∪  𝐵 ) )  →  𝐵  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 37 | 35 36 | mpan2 | ⊢ ( ( 𝐴  ∪  𝐵 )  ∈  ∪  ( 𝑅1  “  On )  →  𝐵  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 38 | 34 37 | jca | ⊢ ( ( 𝐴  ∪  𝐵 )  ∈  ∪  ( 𝑅1  “  On )  →  ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) ) ) | 
						
							| 39 | 31 38 | impbii | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  ↔  ( 𝐴  ∪  𝐵 )  ∈  ∪  ( 𝑅1  “  On ) ) |