Step |
Hyp |
Ref |
Expression |
1 |
|
r1rankidb |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
3 |
|
ssun1 |
⊢ ( rank ‘ 𝐴 ) ⊆ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) |
4 |
|
rankdmr1 |
⊢ ( rank ‘ 𝐴 ) ∈ dom 𝑅1 |
5 |
|
r1funlim |
⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) |
6 |
5
|
simpri |
⊢ Lim dom 𝑅1 |
7 |
|
limord |
⊢ ( Lim dom 𝑅1 → Ord dom 𝑅1 ) |
8 |
6 7
|
ax-mp |
⊢ Ord dom 𝑅1 |
9 |
|
rankdmr1 |
⊢ ( rank ‘ 𝐵 ) ∈ dom 𝑅1 |
10 |
|
ordunel |
⊢ ( ( Ord dom 𝑅1 ∧ ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ∧ ( rank ‘ 𝐵 ) ∈ dom 𝑅1 ) → ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ∈ dom 𝑅1 ) |
11 |
8 4 9 10
|
mp3an |
⊢ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ∈ dom 𝑅1 |
12 |
|
r1ord3g |
⊢ ( ( ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ∧ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ∈ dom 𝑅1 ) → ( ( rank ‘ 𝐴 ) ⊆ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) → ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) ) |
13 |
4 11 12
|
mp2an |
⊢ ( ( rank ‘ 𝐴 ) ⊆ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) → ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) |
14 |
3 13
|
ax-mp |
⊢ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) |
15 |
2 14
|
sstrdi |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → 𝐴 ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) |
16 |
|
r1rankidb |
⊢ ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) → 𝐵 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → 𝐵 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ) |
18 |
|
ssun2 |
⊢ ( rank ‘ 𝐵 ) ⊆ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) |
19 |
|
r1ord3g |
⊢ ( ( ( rank ‘ 𝐵 ) ∈ dom 𝑅1 ∧ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ∈ dom 𝑅1 ) → ( ( rank ‘ 𝐵 ) ⊆ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) → ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) ) |
20 |
9 11 19
|
mp2an |
⊢ ( ( rank ‘ 𝐵 ) ⊆ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) → ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) |
21 |
18 20
|
ax-mp |
⊢ ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) |
22 |
17 21
|
sstrdi |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → 𝐵 ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) |
23 |
15 22
|
unssd |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) |
24 |
|
fvex |
⊢ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ∈ V |
25 |
24
|
elpw2 |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ 𝒫 ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ↔ ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) |
26 |
23 25
|
sylibr |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( 𝐴 ∪ 𝐵 ) ∈ 𝒫 ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) |
27 |
|
r1sucg |
⊢ ( ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ∈ dom 𝑅1 → ( 𝑅1 ‘ suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) = 𝒫 ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) |
28 |
11 27
|
ax-mp |
⊢ ( 𝑅1 ‘ suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) = 𝒫 ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) |
29 |
26 28
|
eleqtrrdi |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( 𝐴 ∪ 𝐵 ) ∈ ( 𝑅1 ‘ suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) |
30 |
|
r1elwf |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ ( 𝑅1 ‘ suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) → ( 𝐴 ∪ 𝐵 ) ∈ ∪ ( 𝑅1 “ On ) ) |
31 |
29 30
|
syl |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( 𝐴 ∪ 𝐵 ) ∈ ∪ ( 𝑅1 “ On ) ) |
32 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
33 |
|
sswf |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
34 |
32 33
|
mpan2 |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
35 |
|
ssun2 |
⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) |
36 |
|
sswf |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ) → 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) |
37 |
35 36
|
mpan2 |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ ∪ ( 𝑅1 “ On ) → 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) |
38 |
34 37
|
jca |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ ∪ ( 𝑅1 “ On ) → ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) ) |
39 |
31 38
|
impbii |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) ↔ ( 𝐴 ∪ 𝐵 ) ∈ ∪ ( 𝑅1 “ On ) ) |