| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relsdom | ⊢ Rel   ≺ | 
						
							| 2 | 1 | brrelex2i | ⊢ ( 1o  ≺  𝐴  →  𝐴  ∈  V ) | 
						
							| 3 | 1 | brrelex2i | ⊢ ( 1o  ≺  𝐵  →  𝐵  ∈  V ) | 
						
							| 4 | 2 3 | anim12i | ⊢ ( ( 1o  ≺  𝐴  ∧  1o  ≺  𝐵 )  →  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) | 
						
							| 5 |  | breq2 | ⊢ ( 𝑥  =  𝐴  →  ( 1o  ≺  𝑥  ↔  1o  ≺  𝐴 ) ) | 
						
							| 6 | 5 | anbi1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 1o  ≺  𝑥  ∧  1o  ≺  𝑦 )  ↔  ( 1o  ≺  𝐴  ∧  1o  ≺  𝑦 ) ) ) | 
						
							| 7 |  | uneq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ∪  𝑦 )  =  ( 𝐴  ∪  𝑦 ) ) | 
						
							| 8 |  | xpeq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ×  𝑦 )  =  ( 𝐴  ×  𝑦 ) ) | 
						
							| 9 | 7 8 | breq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥  ∪  𝑦 )  ≼  ( 𝑥  ×  𝑦 )  ↔  ( 𝐴  ∪  𝑦 )  ≼  ( 𝐴  ×  𝑦 ) ) ) | 
						
							| 10 | 6 9 | imbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( 1o  ≺  𝑥  ∧  1o  ≺  𝑦 )  →  ( 𝑥  ∪  𝑦 )  ≼  ( 𝑥  ×  𝑦 ) )  ↔  ( ( 1o  ≺  𝐴  ∧  1o  ≺  𝑦 )  →  ( 𝐴  ∪  𝑦 )  ≼  ( 𝐴  ×  𝑦 ) ) ) ) | 
						
							| 11 |  | breq2 | ⊢ ( 𝑦  =  𝐵  →  ( 1o  ≺  𝑦  ↔  1o  ≺  𝐵 ) ) | 
						
							| 12 | 11 | anbi2d | ⊢ ( 𝑦  =  𝐵  →  ( ( 1o  ≺  𝐴  ∧  1o  ≺  𝑦 )  ↔  ( 1o  ≺  𝐴  ∧  1o  ≺  𝐵 ) ) ) | 
						
							| 13 |  | uneq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴  ∪  𝑦 )  =  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 14 |  | xpeq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴  ×  𝑦 )  =  ( 𝐴  ×  𝐵 ) ) | 
						
							| 15 | 13 14 | breq12d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝐴  ∪  𝑦 )  ≼  ( 𝐴  ×  𝑦 )  ↔  ( 𝐴  ∪  𝐵 )  ≼  ( 𝐴  ×  𝐵 ) ) ) | 
						
							| 16 | 12 15 | imbi12d | ⊢ ( 𝑦  =  𝐵  →  ( ( ( 1o  ≺  𝐴  ∧  1o  ≺  𝑦 )  →  ( 𝐴  ∪  𝑦 )  ≼  ( 𝐴  ×  𝑦 ) )  ↔  ( ( 1o  ≺  𝐴  ∧  1o  ≺  𝐵 )  →  ( 𝐴  ∪  𝐵 )  ≼  ( 𝐴  ×  𝐵 ) ) ) ) | 
						
							| 17 |  | eqid | ⊢ ( 𝑧  ∈  ( 𝑥  ∪  𝑦 )  ↦  if ( 𝑧  ∈  𝑥 ,  〈 𝑧 ,  if ( 𝑧  =  𝑣 ,  𝑤 ,  𝑡 ) 〉 ,  〈 if ( 𝑧  =  𝑤 ,  𝑢 ,  𝑣 ) ,  𝑧 〉 ) )  =  ( 𝑧  ∈  ( 𝑥  ∪  𝑦 )  ↦  if ( 𝑧  ∈  𝑥 ,  〈 𝑧 ,  if ( 𝑧  =  𝑣 ,  𝑤 ,  𝑡 ) 〉 ,  〈 if ( 𝑧  =  𝑤 ,  𝑢 ,  𝑣 ) ,  𝑧 〉 ) ) | 
						
							| 18 |  | eqid | ⊢ if ( 𝑧  ∈  𝑥 ,  〈 𝑧 ,  if ( 𝑧  =  𝑣 ,  𝑤 ,  𝑡 ) 〉 ,  〈 if ( 𝑧  =  𝑤 ,  𝑢 ,  𝑣 ) ,  𝑧 〉 )  =  if ( 𝑧  ∈  𝑥 ,  〈 𝑧 ,  if ( 𝑧  =  𝑣 ,  𝑤 ,  𝑡 ) 〉 ,  〈 if ( 𝑧  =  𝑤 ,  𝑢 ,  𝑣 ) ,  𝑧 〉 ) | 
						
							| 19 | 17 18 | unxpdomlem3 | ⊢ ( ( 1o  ≺  𝑥  ∧  1o  ≺  𝑦 )  →  ( 𝑥  ∪  𝑦 )  ≼  ( 𝑥  ×  𝑦 ) ) | 
						
							| 20 | 10 16 19 | vtocl2g | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ( ( 1o  ≺  𝐴  ∧  1o  ≺  𝐵 )  →  ( 𝐴  ∪  𝐵 )  ≼  ( 𝐴  ×  𝐵 ) ) ) | 
						
							| 21 | 4 20 | mpcom | ⊢ ( ( 1o  ≺  𝐴  ∧  1o  ≺  𝐵 )  →  ( 𝐴  ∪  𝐵 )  ≼  ( 𝐴  ×  𝐵 ) ) |