Step |
Hyp |
Ref |
Expression |
1 |
|
unxpdomlem1.1 |
⊢ 𝐹 = ( 𝑥 ∈ ( 𝑎 ∪ 𝑏 ) ↦ 𝐺 ) |
2 |
|
unxpdomlem1.2 |
⊢ 𝐺 = if ( 𝑥 ∈ 𝑎 , 〈 𝑥 , if ( 𝑥 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑥 = 𝑡 , 𝑛 , 𝑚 ) , 𝑥 〉 ) |
3 |
|
unxpdomlem2.1 |
⊢ ( 𝜑 → 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) |
4 |
|
unxpdomlem2.2 |
⊢ ( 𝜑 → ¬ 𝑚 = 𝑛 ) |
5 |
|
unxpdomlem2.3 |
⊢ ( 𝜑 → ¬ 𝑠 = 𝑡 ) |
6 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → ¬ 𝑠 = 𝑡 ) |
7 |
|
elun1 |
⊢ ( 𝑧 ∈ 𝑎 → 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ) |
8 |
7
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ) |
9 |
1 2
|
unxpdomlem1 |
⊢ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) → ( 𝐹 ‘ 𝑧 ) = if ( 𝑧 ∈ 𝑎 , 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 ) ) |
10 |
8 9
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → ( 𝐹 ‘ 𝑧 ) = if ( 𝑧 ∈ 𝑎 , 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 ) ) |
11 |
|
iftrue |
⊢ ( 𝑧 ∈ 𝑎 → if ( 𝑧 ∈ 𝑎 , 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 ) = 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 ) |
12 |
11
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → if ( 𝑧 ∈ 𝑎 , 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 ) = 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 ) |
13 |
10 12
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → ( 𝐹 ‘ 𝑧 ) = 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 ) |
14 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) |
15 |
1 2
|
unxpdomlem1 |
⊢ ( 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) → ( 𝐹 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑎 , 〈 𝑤 , if ( 𝑤 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) ) |
16 |
14 15
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → ( 𝐹 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑎 , 〈 𝑤 , if ( 𝑤 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) ) |
17 |
|
iffalse |
⊢ ( ¬ 𝑤 ∈ 𝑎 → if ( 𝑤 ∈ 𝑎 , 〈 𝑤 , if ( 𝑤 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) = 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) |
18 |
17
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → if ( 𝑤 ∈ 𝑎 , 〈 𝑤 , if ( 𝑤 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) = 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) |
19 |
16 18
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → ( 𝐹 ‘ 𝑤 ) = 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) |
20 |
13 19
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 = 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) ) |
21 |
20
|
biimpa |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 = 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) |
22 |
|
vex |
⊢ 𝑧 ∈ V |
23 |
|
vex |
⊢ 𝑡 ∈ V |
24 |
|
vex |
⊢ 𝑠 ∈ V |
25 |
23 24
|
ifex |
⊢ if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) ∈ V |
26 |
22 25
|
opth |
⊢ ( 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 = 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ↔ ( 𝑧 = if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) ∧ if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) = 𝑤 ) ) |
27 |
21 26
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → ( 𝑧 = if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) ∧ if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) = 𝑤 ) ) |
28 |
27
|
simprd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) = 𝑤 ) |
29 |
|
iftrue |
⊢ ( 𝑧 = 𝑚 → if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) = 𝑡 ) |
30 |
28
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → ( if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) = 𝑡 ↔ 𝑤 = 𝑡 ) ) |
31 |
29 30
|
syl5ib |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → ( 𝑧 = 𝑚 → 𝑤 = 𝑡 ) ) |
32 |
|
iftrue |
⊢ ( 𝑤 = 𝑡 → if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) = 𝑛 ) |
33 |
27
|
simpld |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → 𝑧 = if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) ) |
34 |
33
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → ( 𝑧 = 𝑛 ↔ if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) = 𝑛 ) ) |
35 |
32 34
|
syl5ibr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → ( 𝑤 = 𝑡 → 𝑧 = 𝑛 ) ) |
36 |
31 35
|
syld |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → ( 𝑧 = 𝑚 → 𝑧 = 𝑛 ) ) |
37 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → ¬ 𝑚 = 𝑛 ) |
38 |
|
equequ1 |
⊢ ( 𝑧 = 𝑚 → ( 𝑧 = 𝑛 ↔ 𝑚 = 𝑛 ) ) |
39 |
38
|
notbid |
⊢ ( 𝑧 = 𝑚 → ( ¬ 𝑧 = 𝑛 ↔ ¬ 𝑚 = 𝑛 ) ) |
40 |
37 39
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → ( 𝑧 = 𝑚 → ¬ 𝑧 = 𝑛 ) ) |
41 |
36 40
|
pm2.65d |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → ¬ 𝑧 = 𝑚 ) |
42 |
41
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) = 𝑠 ) |
43 |
|
iffalse |
⊢ ( ¬ 𝑤 = 𝑡 → if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) = 𝑚 ) |
44 |
33
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → ( 𝑧 = 𝑚 ↔ if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) = 𝑚 ) ) |
45 |
43 44
|
syl5ibr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → ( ¬ 𝑤 = 𝑡 → 𝑧 = 𝑚 ) ) |
46 |
41 45
|
mt3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → 𝑤 = 𝑡 ) |
47 |
28 42 46
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → 𝑠 = 𝑡 ) |
48 |
6 47
|
mtand |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → ¬ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) |