| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unxpdomlem1.1 |
⊢ 𝐹 = ( 𝑥 ∈ ( 𝑎 ∪ 𝑏 ) ↦ 𝐺 ) |
| 2 |
|
unxpdomlem1.2 |
⊢ 𝐺 = if ( 𝑥 ∈ 𝑎 , 〈 𝑥 , if ( 𝑥 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑥 = 𝑡 , 𝑛 , 𝑚 ) , 𝑥 〉 ) |
| 3 |
|
1sdom |
⊢ ( 𝑎 ∈ V → ( 1o ≺ 𝑎 ↔ ∃ 𝑚 ∈ 𝑎 ∃ 𝑛 ∈ 𝑎 ¬ 𝑚 = 𝑛 ) ) |
| 4 |
3
|
elv |
⊢ ( 1o ≺ 𝑎 ↔ ∃ 𝑚 ∈ 𝑎 ∃ 𝑛 ∈ 𝑎 ¬ 𝑚 = 𝑛 ) |
| 5 |
|
1sdom |
⊢ ( 𝑏 ∈ V → ( 1o ≺ 𝑏 ↔ ∃ 𝑠 ∈ 𝑏 ∃ 𝑡 ∈ 𝑏 ¬ 𝑠 = 𝑡 ) ) |
| 6 |
5
|
elv |
⊢ ( 1o ≺ 𝑏 ↔ ∃ 𝑠 ∈ 𝑏 ∃ 𝑡 ∈ 𝑏 ¬ 𝑠 = 𝑡 ) |
| 7 |
|
reeanv |
⊢ ( ∃ 𝑚 ∈ 𝑎 ∃ 𝑠 ∈ 𝑏 ( ∃ 𝑛 ∈ 𝑎 ¬ 𝑚 = 𝑛 ∧ ∃ 𝑡 ∈ 𝑏 ¬ 𝑠 = 𝑡 ) ↔ ( ∃ 𝑚 ∈ 𝑎 ∃ 𝑛 ∈ 𝑎 ¬ 𝑚 = 𝑛 ∧ ∃ 𝑠 ∈ 𝑏 ∃ 𝑡 ∈ 𝑏 ¬ 𝑠 = 𝑡 ) ) |
| 8 |
|
reeanv |
⊢ ( ∃ 𝑛 ∈ 𝑎 ∃ 𝑡 ∈ 𝑏 ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ↔ ( ∃ 𝑛 ∈ 𝑎 ¬ 𝑚 = 𝑛 ∧ ∃ 𝑡 ∈ 𝑏 ¬ 𝑠 = 𝑡 ) ) |
| 9 |
|
vex |
⊢ 𝑎 ∈ V |
| 10 |
|
vex |
⊢ 𝑏 ∈ V |
| 11 |
9 10
|
unex |
⊢ ( 𝑎 ∪ 𝑏 ) ∈ V |
| 12 |
9 10
|
xpex |
⊢ ( 𝑎 × 𝑏 ) ∈ V |
| 13 |
|
simpr |
⊢ ( ( ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) ∧ 𝑥 ∈ ( 𝑎 ∪ 𝑏 ) ) ∧ 𝑥 ∈ 𝑎 ) → 𝑥 ∈ 𝑎 ) |
| 14 |
|
simp2r |
⊢ ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) → 𝑡 ∈ 𝑏 ) |
| 15 |
|
simp1r |
⊢ ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) → 𝑠 ∈ 𝑏 ) |
| 16 |
14 15
|
ifcld |
⊢ ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) → if ( 𝑥 = 𝑚 , 𝑡 , 𝑠 ) ∈ 𝑏 ) |
| 17 |
16
|
ad2antrr |
⊢ ( ( ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) ∧ 𝑥 ∈ ( 𝑎 ∪ 𝑏 ) ) ∧ 𝑥 ∈ 𝑎 ) → if ( 𝑥 = 𝑚 , 𝑡 , 𝑠 ) ∈ 𝑏 ) |
| 18 |
13 17
|
opelxpd |
⊢ ( ( ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) ∧ 𝑥 ∈ ( 𝑎 ∪ 𝑏 ) ) ∧ 𝑥 ∈ 𝑎 ) → 〈 𝑥 , if ( 𝑥 = 𝑚 , 𝑡 , 𝑠 ) 〉 ∈ ( 𝑎 × 𝑏 ) ) |
| 19 |
|
simp2l |
⊢ ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) → 𝑛 ∈ 𝑎 ) |
| 20 |
|
simp1l |
⊢ ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) → 𝑚 ∈ 𝑎 ) |
| 21 |
19 20
|
ifcld |
⊢ ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) → if ( 𝑥 = 𝑡 , 𝑛 , 𝑚 ) ∈ 𝑎 ) |
| 22 |
21
|
ad2antrr |
⊢ ( ( ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) ∧ 𝑥 ∈ ( 𝑎 ∪ 𝑏 ) ) ∧ ¬ 𝑥 ∈ 𝑎 ) → if ( 𝑥 = 𝑡 , 𝑛 , 𝑚 ) ∈ 𝑎 ) |
| 23 |
|
simpr |
⊢ ( ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) ∧ 𝑥 ∈ ( 𝑎 ∪ 𝑏 ) ) → 𝑥 ∈ ( 𝑎 ∪ 𝑏 ) ) |
| 24 |
|
elun |
⊢ ( 𝑥 ∈ ( 𝑎 ∪ 𝑏 ) ↔ ( 𝑥 ∈ 𝑎 ∨ 𝑥 ∈ 𝑏 ) ) |
| 25 |
23 24
|
sylib |
⊢ ( ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) ∧ 𝑥 ∈ ( 𝑎 ∪ 𝑏 ) ) → ( 𝑥 ∈ 𝑎 ∨ 𝑥 ∈ 𝑏 ) ) |
| 26 |
25
|
orcanai |
⊢ ( ( ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) ∧ 𝑥 ∈ ( 𝑎 ∪ 𝑏 ) ) ∧ ¬ 𝑥 ∈ 𝑎 ) → 𝑥 ∈ 𝑏 ) |
| 27 |
22 26
|
opelxpd |
⊢ ( ( ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) ∧ 𝑥 ∈ ( 𝑎 ∪ 𝑏 ) ) ∧ ¬ 𝑥 ∈ 𝑎 ) → 〈 if ( 𝑥 = 𝑡 , 𝑛 , 𝑚 ) , 𝑥 〉 ∈ ( 𝑎 × 𝑏 ) ) |
| 28 |
18 27
|
ifclda |
⊢ ( ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) ∧ 𝑥 ∈ ( 𝑎 ∪ 𝑏 ) ) → if ( 𝑥 ∈ 𝑎 , 〈 𝑥 , if ( 𝑥 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑥 = 𝑡 , 𝑛 , 𝑚 ) , 𝑥 〉 ) ∈ ( 𝑎 × 𝑏 ) ) |
| 29 |
2 28
|
eqeltrid |
⊢ ( ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) ∧ 𝑥 ∈ ( 𝑎 ∪ 𝑏 ) ) → 𝐺 ∈ ( 𝑎 × 𝑏 ) ) |
| 30 |
29 1
|
fmptd |
⊢ ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) → 𝐹 : ( 𝑎 ∪ 𝑏 ) ⟶ ( 𝑎 × 𝑏 ) ) |
| 31 |
1 2
|
unxpdomlem1 |
⊢ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) → ( 𝐹 ‘ 𝑧 ) = if ( 𝑧 ∈ 𝑎 , 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 ) ) |
| 32 |
31
|
ad2antrl |
⊢ ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) → ( 𝐹 ‘ 𝑧 ) = if ( 𝑧 ∈ 𝑎 , 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 ) ) |
| 33 |
|
iftrue |
⊢ ( 𝑧 ∈ 𝑎 → if ( 𝑧 ∈ 𝑎 , 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 ) = 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝑧 ∈ 𝑎 ∧ 𝑤 ∈ 𝑎 ) → if ( 𝑧 ∈ 𝑎 , 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 ) = 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 ) |
| 35 |
32 34
|
sylan9eq |
⊢ ( ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) ∧ ( 𝑧 ∈ 𝑎 ∧ 𝑤 ∈ 𝑎 ) ) → ( 𝐹 ‘ 𝑧 ) = 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 ) |
| 36 |
1 2
|
unxpdomlem1 |
⊢ ( 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) → ( 𝐹 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑎 , 〈 𝑤 , if ( 𝑤 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) ) |
| 37 |
36
|
ad2antll |
⊢ ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) → ( 𝐹 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑎 , 〈 𝑤 , if ( 𝑤 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) ) |
| 38 |
|
iftrue |
⊢ ( 𝑤 ∈ 𝑎 → if ( 𝑤 ∈ 𝑎 , 〈 𝑤 , if ( 𝑤 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) = 〈 𝑤 , if ( 𝑤 = 𝑚 , 𝑡 , 𝑠 ) 〉 ) |
| 39 |
38
|
adantl |
⊢ ( ( 𝑧 ∈ 𝑎 ∧ 𝑤 ∈ 𝑎 ) → if ( 𝑤 ∈ 𝑎 , 〈 𝑤 , if ( 𝑤 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) = 〈 𝑤 , if ( 𝑤 = 𝑚 , 𝑡 , 𝑠 ) 〉 ) |
| 40 |
37 39
|
sylan9eq |
⊢ ( ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) ∧ ( 𝑧 ∈ 𝑎 ∧ 𝑤 ∈ 𝑎 ) ) → ( 𝐹 ‘ 𝑤 ) = 〈 𝑤 , if ( 𝑤 = 𝑚 , 𝑡 , 𝑠 ) 〉 ) |
| 41 |
35 40
|
eqeq12d |
⊢ ( ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) ∧ ( 𝑧 ∈ 𝑎 ∧ 𝑤 ∈ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 = 〈 𝑤 , if ( 𝑤 = 𝑚 , 𝑡 , 𝑠 ) 〉 ) ) |
| 42 |
|
vex |
⊢ 𝑧 ∈ V |
| 43 |
|
vex |
⊢ 𝑡 ∈ V |
| 44 |
|
vex |
⊢ 𝑠 ∈ V |
| 45 |
43 44
|
ifex |
⊢ if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) ∈ V |
| 46 |
42 45
|
opth1 |
⊢ ( 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 = 〈 𝑤 , if ( 𝑤 = 𝑚 , 𝑡 , 𝑠 ) 〉 → 𝑧 = 𝑤 ) |
| 47 |
41 46
|
biimtrdi |
⊢ ( ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) ∧ ( 𝑧 ∈ 𝑎 ∧ 𝑤 ∈ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 48 |
|
simprr |
⊢ ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) → 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) |
| 49 |
|
simpll |
⊢ ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) → ¬ 𝑚 = 𝑛 ) |
| 50 |
|
simplr |
⊢ ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) → ¬ 𝑠 = 𝑡 ) |
| 51 |
1 2 48 49 50
|
unxpdomlem2 |
⊢ ( ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → ¬ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 52 |
51
|
pm2.21d |
⊢ ( ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 53 |
|
eqcom |
⊢ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 54 |
|
simprl |
⊢ ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) → 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ) |
| 55 |
1 2 54 49 50
|
unxpdomlem2 |
⊢ ( ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) ∧ ( 𝑤 ∈ 𝑎 ∧ ¬ 𝑧 ∈ 𝑎 ) ) → ¬ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 56 |
55
|
ancom2s |
⊢ ( ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) ∧ ( ¬ 𝑧 ∈ 𝑎 ∧ 𝑤 ∈ 𝑎 ) ) → ¬ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 57 |
56
|
pm2.21d |
⊢ ( ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) ∧ ( ¬ 𝑧 ∈ 𝑎 ∧ 𝑤 ∈ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) → 𝑧 = 𝑤 ) ) |
| 58 |
53 57
|
biimtrid |
⊢ ( ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) ∧ ( ¬ 𝑧 ∈ 𝑎 ∧ 𝑤 ∈ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 59 |
|
iffalse |
⊢ ( ¬ 𝑧 ∈ 𝑎 → if ( 𝑧 ∈ 𝑎 , 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 ) = 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 ) |
| 60 |
59
|
adantr |
⊢ ( ( ¬ 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) → if ( 𝑧 ∈ 𝑎 , 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 ) = 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 ) |
| 61 |
32 60
|
sylan9eq |
⊢ ( ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) ∧ ( ¬ 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → ( 𝐹 ‘ 𝑧 ) = 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 ) |
| 62 |
|
iffalse |
⊢ ( ¬ 𝑤 ∈ 𝑎 → if ( 𝑤 ∈ 𝑎 , 〈 𝑤 , if ( 𝑤 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) = 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) |
| 63 |
62
|
adantl |
⊢ ( ( ¬ 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) → if ( 𝑤 ∈ 𝑎 , 〈 𝑤 , if ( 𝑤 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) = 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) |
| 64 |
37 63
|
sylan9eq |
⊢ ( ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) ∧ ( ¬ 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → ( 𝐹 ‘ 𝑤 ) = 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) |
| 65 |
61 64
|
eqeq12d |
⊢ ( ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) ∧ ( ¬ 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 = 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) ) |
| 66 |
|
vex |
⊢ 𝑛 ∈ V |
| 67 |
|
vex |
⊢ 𝑚 ∈ V |
| 68 |
66 67
|
ifex |
⊢ if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) ∈ V |
| 69 |
68 42
|
opth |
⊢ ( 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 = 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ↔ ( if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) = if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) ∧ 𝑧 = 𝑤 ) ) |
| 70 |
69
|
simprbi |
⊢ ( 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 = 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 → 𝑧 = 𝑤 ) |
| 71 |
65 70
|
biimtrdi |
⊢ ( ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) ∧ ( ¬ 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 72 |
47 52 58 71
|
4casesdan |
⊢ ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 73 |
72
|
ralrimivva |
⊢ ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) → ∀ 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∀ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 74 |
73
|
3ad2ant3 |
⊢ ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) → ∀ 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∀ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 75 |
|
dff13 |
⊢ ( 𝐹 : ( 𝑎 ∪ 𝑏 ) –1-1→ ( 𝑎 × 𝑏 ) ↔ ( 𝐹 : ( 𝑎 ∪ 𝑏 ) ⟶ ( 𝑎 × 𝑏 ) ∧ ∀ 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∀ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
| 76 |
30 74 75
|
sylanbrc |
⊢ ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) → 𝐹 : ( 𝑎 ∪ 𝑏 ) –1-1→ ( 𝑎 × 𝑏 ) ) |
| 77 |
|
f1dom2g |
⊢ ( ( ( 𝑎 ∪ 𝑏 ) ∈ V ∧ ( 𝑎 × 𝑏 ) ∈ V ∧ 𝐹 : ( 𝑎 ∪ 𝑏 ) –1-1→ ( 𝑎 × 𝑏 ) ) → ( 𝑎 ∪ 𝑏 ) ≼ ( 𝑎 × 𝑏 ) ) |
| 78 |
11 12 76 77
|
mp3an12i |
⊢ ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) → ( 𝑎 ∪ 𝑏 ) ≼ ( 𝑎 × 𝑏 ) ) |
| 79 |
78
|
3expia |
⊢ ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ) → ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) → ( 𝑎 ∪ 𝑏 ) ≼ ( 𝑎 × 𝑏 ) ) ) |
| 80 |
79
|
rexlimdvva |
⊢ ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) → ( ∃ 𝑛 ∈ 𝑎 ∃ 𝑡 ∈ 𝑏 ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) → ( 𝑎 ∪ 𝑏 ) ≼ ( 𝑎 × 𝑏 ) ) ) |
| 81 |
8 80
|
biimtrrid |
⊢ ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) → ( ( ∃ 𝑛 ∈ 𝑎 ¬ 𝑚 = 𝑛 ∧ ∃ 𝑡 ∈ 𝑏 ¬ 𝑠 = 𝑡 ) → ( 𝑎 ∪ 𝑏 ) ≼ ( 𝑎 × 𝑏 ) ) ) |
| 82 |
81
|
rexlimivv |
⊢ ( ∃ 𝑚 ∈ 𝑎 ∃ 𝑠 ∈ 𝑏 ( ∃ 𝑛 ∈ 𝑎 ¬ 𝑚 = 𝑛 ∧ ∃ 𝑡 ∈ 𝑏 ¬ 𝑠 = 𝑡 ) → ( 𝑎 ∪ 𝑏 ) ≼ ( 𝑎 × 𝑏 ) ) |
| 83 |
7 82
|
sylbir |
⊢ ( ( ∃ 𝑚 ∈ 𝑎 ∃ 𝑛 ∈ 𝑎 ¬ 𝑚 = 𝑛 ∧ ∃ 𝑠 ∈ 𝑏 ∃ 𝑡 ∈ 𝑏 ¬ 𝑠 = 𝑡 ) → ( 𝑎 ∪ 𝑏 ) ≼ ( 𝑎 × 𝑏 ) ) |
| 84 |
4 6 83
|
syl2anb |
⊢ ( ( 1o ≺ 𝑎 ∧ 1o ≺ 𝑏 ) → ( 𝑎 ∪ 𝑏 ) ≼ ( 𝑎 × 𝑏 ) ) |