Step |
Hyp |
Ref |
Expression |
1 |
|
ensym |
⊢ ( ( 𝐴 × 𝐴 ) ≈ ( 𝐵 ∪ 𝐶 ) → ( 𝐵 ∪ 𝐶 ) ≈ ( 𝐴 × 𝐴 ) ) |
2 |
|
bren |
⊢ ( ( 𝐵 ∪ 𝐶 ) ≈ ( 𝐴 × 𝐴 ) ↔ ∃ 𝑓 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ) |
3 |
|
ssdif0 |
⊢ ( 𝐴 ⊆ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ↔ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) = ∅ ) |
4 |
|
dmxpid |
⊢ dom ( 𝐴 × 𝐴 ) = 𝐴 |
5 |
|
f1ofo |
⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → 𝑓 : ( 𝐵 ∪ 𝐶 ) –onto→ ( 𝐴 × 𝐴 ) ) |
6 |
|
forn |
⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –onto→ ( 𝐴 × 𝐴 ) → ran 𝑓 = ( 𝐴 × 𝐴 ) ) |
7 |
5 6
|
syl |
⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ran 𝑓 = ( 𝐴 × 𝐴 ) ) |
8 |
|
vex |
⊢ 𝑓 ∈ V |
9 |
8
|
rnex |
⊢ ran 𝑓 ∈ V |
10 |
7 9
|
eqeltrrdi |
⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ( 𝐴 × 𝐴 ) ∈ V ) |
11 |
10
|
dmexd |
⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → dom ( 𝐴 × 𝐴 ) ∈ V ) |
12 |
4 11
|
eqeltrrid |
⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → 𝐴 ∈ V ) |
13 |
|
imassrn |
⊢ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ⊆ ran ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) |
14 |
|
f1stres |
⊢ ( 1st ↾ ( 𝐴 × 𝐴 ) ) : ( 𝐴 × 𝐴 ) ⟶ 𝐴 |
15 |
|
f1of |
⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → 𝑓 : ( 𝐵 ∪ 𝐶 ) ⟶ ( 𝐴 × 𝐴 ) ) |
16 |
|
fco |
⊢ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) : ( 𝐴 × 𝐴 ) ⟶ 𝐴 ∧ 𝑓 : ( 𝐵 ∪ 𝐶 ) ⟶ ( 𝐴 × 𝐴 ) ) → ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) : ( 𝐵 ∪ 𝐶 ) ⟶ 𝐴 ) |
17 |
14 15 16
|
sylancr |
⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) : ( 𝐵 ∪ 𝐶 ) ⟶ 𝐴 ) |
18 |
17
|
frnd |
⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ran ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) ⊆ 𝐴 ) |
19 |
13 18
|
sstrid |
⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ⊆ 𝐴 ) |
20 |
12 19
|
ssexd |
⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ∈ V ) |
21 |
20
|
adantr |
⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝐴 ⊆ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) → ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ∈ V ) |
22 |
|
simpr |
⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝐴 ⊆ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) → 𝐴 ⊆ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) |
23 |
|
ssdomg |
⊢ ( ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ∈ V → ( 𝐴 ⊆ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) → 𝐴 ≼ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) |
24 |
21 22 23
|
sylc |
⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝐴 ⊆ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) → 𝐴 ≼ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) |
25 |
|
domwdom |
⊢ ( 𝐴 ≼ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) → 𝐴 ≼* ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) |
26 |
24 25
|
syl |
⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝐴 ⊆ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) → 𝐴 ≼* ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) |
27 |
17
|
ffund |
⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → Fun ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) ) |
28 |
|
ssun1 |
⊢ 𝐵 ⊆ ( 𝐵 ∪ 𝐶 ) |
29 |
|
f1odm |
⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → dom 𝑓 = ( 𝐵 ∪ 𝐶 ) ) |
30 |
8
|
dmex |
⊢ dom 𝑓 ∈ V |
31 |
29 30
|
eqeltrrdi |
⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ( 𝐵 ∪ 𝐶 ) ∈ V ) |
32 |
|
ssexg |
⊢ ( ( 𝐵 ⊆ ( 𝐵 ∪ 𝐶 ) ∧ ( 𝐵 ∪ 𝐶 ) ∈ V ) → 𝐵 ∈ V ) |
33 |
28 31 32
|
sylancr |
⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → 𝐵 ∈ V ) |
34 |
|
wdomima2g |
⊢ ( ( Fun ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) ∧ 𝐵 ∈ V ∧ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ∈ V ) → ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ≼* 𝐵 ) |
35 |
27 33 20 34
|
syl3anc |
⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ≼* 𝐵 ) |
36 |
35
|
adantr |
⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝐴 ⊆ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) → ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ≼* 𝐵 ) |
37 |
|
wdomtr |
⊢ ( ( 𝐴 ≼* ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ∧ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ≼* 𝐵 ) → 𝐴 ≼* 𝐵 ) |
38 |
26 36 37
|
syl2anc |
⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝐴 ⊆ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) → 𝐴 ≼* 𝐵 ) |
39 |
38
|
orcd |
⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝐴 ⊆ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) → ( 𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶 ) ) |
40 |
39
|
ex |
⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ( 𝐴 ⊆ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) → ( 𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶 ) ) ) |
41 |
3 40
|
syl5bir |
⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ( ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) = ∅ → ( 𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶 ) ) ) |
42 |
|
n0 |
⊢ ( ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) |
43 |
|
ssun2 |
⊢ 𝐶 ⊆ ( 𝐵 ∪ 𝐶 ) |
44 |
|
ssexg |
⊢ ( ( 𝐶 ⊆ ( 𝐵 ∪ 𝐶 ) ∧ ( 𝐵 ∪ 𝐶 ) ∈ V ) → 𝐶 ∈ V ) |
45 |
43 31 44
|
sylancr |
⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → 𝐶 ∈ V ) |
46 |
45
|
adantr |
⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → 𝐶 ∈ V ) |
47 |
|
f1ofn |
⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → 𝑓 Fn ( 𝐵 ∪ 𝐶 ) ) |
48 |
|
elpreima |
⊢ ( 𝑓 Fn ( 𝐵 ∪ 𝐶 ) → ( 𝑦 ∈ ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) ↔ ( 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ) ) ) |
49 |
47 48
|
syl |
⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ( 𝑦 ∈ ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) ↔ ( 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ) ) ) |
50 |
49
|
adantr |
⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( 𝑦 ∈ ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) ↔ ( 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ) ) ) |
51 |
|
elun |
⊢ ( 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶 ) ) |
52 |
|
df-or |
⊢ ( ( 𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶 ) ↔ ( ¬ 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
53 |
51 52
|
bitri |
⊢ ( 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ↔ ( ¬ 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
54 |
|
eldifn |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) → ¬ 𝑥 ∈ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) |
55 |
54
|
ad2antlr |
⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ) → ¬ 𝑥 ∈ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) |
56 |
15
|
ad2antrr |
⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → 𝑓 : ( 𝐵 ∪ 𝐶 ) ⟶ ( 𝐴 × 𝐴 ) ) |
57 |
|
simprr |
⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
58 |
28 57
|
sselid |
⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ) |
59 |
|
fvco3 |
⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) ⟶ ( 𝐴 × 𝐴 ) ∧ 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ) → ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) ‘ 𝑦 ) = ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ‘ ( 𝑓 ‘ 𝑦 ) ) ) |
60 |
56 58 59
|
syl2anc |
⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) ‘ 𝑦 ) = ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ‘ ( 𝑓 ‘ 𝑦 ) ) ) |
61 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) → 𝑥 ∈ 𝐴 ) |
62 |
61
|
adantl |
⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → 𝑥 ∈ 𝐴 ) |
63 |
62
|
snssd |
⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → { 𝑥 } ⊆ 𝐴 ) |
64 |
|
xpss1 |
⊢ ( { 𝑥 } ⊆ 𝐴 → ( { 𝑥 } × 𝐴 ) ⊆ ( 𝐴 × 𝐴 ) ) |
65 |
63 64
|
syl |
⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( { 𝑥 } × 𝐴 ) ⊆ ( 𝐴 × 𝐴 ) ) |
66 |
65
|
adantr |
⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → ( { 𝑥 } × 𝐴 ) ⊆ ( 𝐴 × 𝐴 ) ) |
67 |
|
simprl |
⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ) |
68 |
66 67
|
sseldd |
⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑓 ‘ 𝑦 ) ∈ ( 𝐴 × 𝐴 ) ) |
69 |
68
|
fvresd |
⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ‘ ( 𝑓 ‘ 𝑦 ) ) = ( 1st ‘ ( 𝑓 ‘ 𝑦 ) ) ) |
70 |
|
xp1st |
⊢ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) → ( 1st ‘ ( 𝑓 ‘ 𝑦 ) ) ∈ { 𝑥 } ) |
71 |
67 70
|
syl |
⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → ( 1st ‘ ( 𝑓 ‘ 𝑦 ) ) ∈ { 𝑥 } ) |
72 |
69 71
|
eqeltrd |
⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ‘ ( 𝑓 ‘ 𝑦 ) ) ∈ { 𝑥 } ) |
73 |
|
elsni |
⊢ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ‘ ( 𝑓 ‘ 𝑦 ) ) ∈ { 𝑥 } → ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ‘ ( 𝑓 ‘ 𝑦 ) ) = 𝑥 ) |
74 |
72 73
|
syl |
⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ‘ ( 𝑓 ‘ 𝑦 ) ) = 𝑥 ) |
75 |
60 74
|
eqtrd |
⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) ‘ 𝑦 ) = 𝑥 ) |
76 |
17
|
ffnd |
⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) Fn ( 𝐵 ∪ 𝐶 ) ) |
77 |
76
|
ad2antrr |
⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) Fn ( 𝐵 ∪ 𝐶 ) ) |
78 |
28
|
a1i |
⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → 𝐵 ⊆ ( 𝐵 ∪ 𝐶 ) ) |
79 |
|
fnfvima |
⊢ ( ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) Fn ( 𝐵 ∪ 𝐶 ) ∧ 𝐵 ⊆ ( 𝐵 ∪ 𝐶 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) ‘ 𝑦 ) ∈ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) |
80 |
77 78 57 79
|
syl3anc |
⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) ‘ 𝑦 ) ∈ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) |
81 |
75 80
|
eqeltrrd |
⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) |
82 |
81
|
expr |
⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ) → ( 𝑦 ∈ 𝐵 → 𝑥 ∈ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) |
83 |
55 82
|
mtod |
⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ) → ¬ 𝑦 ∈ 𝐵 ) |
84 |
83
|
ex |
⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) → ¬ 𝑦 ∈ 𝐵 ) ) |
85 |
84
|
imim1d |
⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( ( ¬ 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) → ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) → 𝑦 ∈ 𝐶 ) ) ) |
86 |
53 85
|
syl5bi |
⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) → ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) → 𝑦 ∈ 𝐶 ) ) ) |
87 |
86
|
impd |
⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( ( 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ) → 𝑦 ∈ 𝐶 ) ) |
88 |
50 87
|
sylbid |
⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( 𝑦 ∈ ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) → 𝑦 ∈ 𝐶 ) ) |
89 |
88
|
ssrdv |
⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) ⊆ 𝐶 ) |
90 |
|
ssdomg |
⊢ ( 𝐶 ∈ V → ( ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) ⊆ 𝐶 → ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) ≼ 𝐶 ) ) |
91 |
46 89 90
|
sylc |
⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) ≼ 𝐶 ) |
92 |
|
f1ocnv |
⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ◡ 𝑓 : ( 𝐴 × 𝐴 ) –1-1-onto→ ( 𝐵 ∪ 𝐶 ) ) |
93 |
|
f1of1 |
⊢ ( ◡ 𝑓 : ( 𝐴 × 𝐴 ) –1-1-onto→ ( 𝐵 ∪ 𝐶 ) → ◡ 𝑓 : ( 𝐴 × 𝐴 ) –1-1→ ( 𝐵 ∪ 𝐶 ) ) |
94 |
92 93
|
syl |
⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ◡ 𝑓 : ( 𝐴 × 𝐴 ) –1-1→ ( 𝐵 ∪ 𝐶 ) ) |
95 |
94
|
adantr |
⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ◡ 𝑓 : ( 𝐴 × 𝐴 ) –1-1→ ( 𝐵 ∪ 𝐶 ) ) |
96 |
31
|
adantr |
⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( 𝐵 ∪ 𝐶 ) ∈ V ) |
97 |
|
snex |
⊢ { 𝑥 } ∈ V |
98 |
12
|
adantr |
⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → 𝐴 ∈ V ) |
99 |
|
xpexg |
⊢ ( ( { 𝑥 } ∈ V ∧ 𝐴 ∈ V ) → ( { 𝑥 } × 𝐴 ) ∈ V ) |
100 |
97 98 99
|
sylancr |
⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( { 𝑥 } × 𝐴 ) ∈ V ) |
101 |
|
f1imaen2g |
⊢ ( ( ( ◡ 𝑓 : ( 𝐴 × 𝐴 ) –1-1→ ( 𝐵 ∪ 𝐶 ) ∧ ( 𝐵 ∪ 𝐶 ) ∈ V ) ∧ ( ( { 𝑥 } × 𝐴 ) ⊆ ( 𝐴 × 𝐴 ) ∧ ( { 𝑥 } × 𝐴 ) ∈ V ) ) → ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) ≈ ( { 𝑥 } × 𝐴 ) ) |
102 |
95 96 65 100 101
|
syl22anc |
⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) ≈ ( { 𝑥 } × 𝐴 ) ) |
103 |
|
vex |
⊢ 𝑥 ∈ V |
104 |
|
xpsnen2g |
⊢ ( ( 𝑥 ∈ V ∧ 𝐴 ∈ V ) → ( { 𝑥 } × 𝐴 ) ≈ 𝐴 ) |
105 |
103 98 104
|
sylancr |
⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( { 𝑥 } × 𝐴 ) ≈ 𝐴 ) |
106 |
|
entr |
⊢ ( ( ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) ≈ ( { 𝑥 } × 𝐴 ) ∧ ( { 𝑥 } × 𝐴 ) ≈ 𝐴 ) → ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) ≈ 𝐴 ) |
107 |
102 105 106
|
syl2anc |
⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) ≈ 𝐴 ) |
108 |
|
domen1 |
⊢ ( ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) ≈ 𝐴 → ( ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) ≼ 𝐶 ↔ 𝐴 ≼ 𝐶 ) ) |
109 |
107 108
|
syl |
⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) ≼ 𝐶 ↔ 𝐴 ≼ 𝐶 ) ) |
110 |
91 109
|
mpbid |
⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → 𝐴 ≼ 𝐶 ) |
111 |
110
|
olcd |
⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( 𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶 ) ) |
112 |
111
|
ex |
⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ( 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) → ( 𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶 ) ) ) |
113 |
112
|
exlimdv |
⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ( ∃ 𝑥 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) → ( 𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶 ) ) ) |
114 |
42 113
|
syl5bi |
⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ( ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ≠ ∅ → ( 𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶 ) ) ) |
115 |
41 114
|
pm2.61dne |
⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ( 𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶 ) ) |
116 |
115
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ( 𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶 ) ) |
117 |
2 116
|
sylbi |
⊢ ( ( 𝐵 ∪ 𝐶 ) ≈ ( 𝐴 × 𝐴 ) → ( 𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶 ) ) |
118 |
1 117
|
syl |
⊢ ( ( 𝐴 × 𝐴 ) ≈ ( 𝐵 ∪ 𝐶 ) → ( 𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶 ) ) |