Step |
Hyp |
Ref |
Expression |
1 |
|
upbdrech.a |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
2 |
|
upbdrech.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
3 |
|
upbdrech.bd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) |
4 |
|
upbdrech.c |
⊢ 𝐶 = sup ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } , ℝ , < ) |
5 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℝ ) |
6 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℝ |
7 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 ∈ ℝ |
8 |
|
simp3 |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵 ) → 𝑧 = 𝐵 ) |
9 |
|
rspa |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
10 |
9
|
3adant3 |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵 ) → 𝐵 ∈ ℝ ) |
11 |
8 10
|
eqeltrd |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵 ) → 𝑧 ∈ ℝ ) |
12 |
11
|
3exp |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℝ → ( 𝑥 ∈ 𝐴 → ( 𝑧 = 𝐵 → 𝑧 ∈ ℝ ) ) ) |
13 |
6 7 12
|
rexlimd |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℝ → ( ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ ℝ ) ) |
14 |
13
|
abssdv |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℝ → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ⊆ ℝ ) |
15 |
5 14
|
syl |
⊢ ( 𝜑 → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ⊆ ℝ ) |
16 |
|
eqidd |
⊢ ( 𝑥 ∈ 𝐴 → 𝐵 = 𝐵 ) |
17 |
16
|
rgen |
⊢ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐵 |
18 |
|
r19.2z |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝐵 = 𝐵 ) |
19 |
1 17 18
|
sylancl |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝐵 = 𝐵 ) |
20 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
21 |
|
nfre1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 |
22 |
21
|
nfex |
⊢ Ⅎ 𝑥 ∃ 𝑧 ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 |
23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
24 |
|
elex |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ V ) |
25 |
2 24
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ V ) |
26 |
|
isset |
⊢ ( 𝐵 ∈ V ↔ ∃ 𝑧 𝑧 = 𝐵 ) |
27 |
25 26
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑧 𝑧 = 𝐵 ) |
28 |
|
rspe |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑧 𝑧 = 𝐵 ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑧 𝑧 = 𝐵 ) |
29 |
23 27 28
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑧 𝑧 = 𝐵 ) |
30 |
|
rexcom4 |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑧 𝑧 = 𝐵 ↔ ∃ 𝑧 ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) |
31 |
29 30
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑧 ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) |
32 |
31
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵 = 𝐵 ) → ∃ 𝑧 ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) |
33 |
32
|
3exp |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝐵 = 𝐵 → ∃ 𝑧 ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) ) ) |
34 |
20 22 33
|
rexlimd |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝐵 = 𝐵 → ∃ 𝑧 ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) ) |
35 |
19 34
|
mpd |
⊢ ( 𝜑 → ∃ 𝑧 ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) |
36 |
|
abn0 |
⊢ ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ≠ ∅ ↔ ∃ 𝑧 ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) |
37 |
35 36
|
sylibr |
⊢ ( 𝜑 → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ≠ ∅ ) |
38 |
|
vex |
⊢ 𝑤 ∈ V |
39 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 = 𝐵 ↔ 𝑤 = 𝐵 ) ) |
40 |
39
|
rexbidv |
⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑤 = 𝐵 ) ) |
41 |
38 40
|
elab |
⊢ ( 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ↔ ∃ 𝑥 ∈ 𝐴 𝑤 = 𝐵 ) |
42 |
41
|
biimpi |
⊢ ( 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } → ∃ 𝑥 ∈ 𝐴 𝑤 = 𝐵 ) |
43 |
42
|
adantl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ∧ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) → ∃ 𝑥 ∈ 𝐴 𝑤 = 𝐵 ) |
44 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 |
45 |
20 44
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) |
46 |
21
|
nfsab |
⊢ Ⅎ 𝑥 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } |
47 |
45 46
|
nfan |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ∧ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) |
48 |
|
nfv |
⊢ Ⅎ 𝑥 𝑤 ≤ 𝑦 |
49 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑤 = 𝐵 ) → 𝑤 = 𝐵 ) |
50 |
|
simp1r |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑤 = 𝐵 ) → ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) |
51 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑤 = 𝐵 ) → 𝑥 ∈ 𝐴 ) |
52 |
|
rspa |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ 𝑦 ) |
53 |
50 51 52
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑤 = 𝐵 ) → 𝐵 ≤ 𝑦 ) |
54 |
49 53
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑤 = 𝐵 ) → 𝑤 ≤ 𝑦 ) |
55 |
54
|
3exp |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) → ( 𝑥 ∈ 𝐴 → ( 𝑤 = 𝐵 → 𝑤 ≤ 𝑦 ) ) ) |
56 |
55
|
adantr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ∧ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) → ( 𝑥 ∈ 𝐴 → ( 𝑤 = 𝐵 → 𝑤 ≤ 𝑦 ) ) ) |
57 |
47 48 56
|
rexlimd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ∧ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) → ( ∃ 𝑥 ∈ 𝐴 𝑤 = 𝐵 → 𝑤 ≤ 𝑦 ) ) |
58 |
43 57
|
mpd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ∧ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) → 𝑤 ≤ 𝑦 ) |
59 |
58
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) → ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } 𝑤 ≤ 𝑦 ) |
60 |
59
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) → ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } 𝑤 ≤ 𝑦 ) |
61 |
60
|
3exp |
⊢ ( 𝜑 → ( 𝑦 ∈ ℝ → ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 → ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } 𝑤 ≤ 𝑦 ) ) ) |
62 |
61
|
reximdvai |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 → ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } 𝑤 ≤ 𝑦 ) ) |
63 |
3 62
|
mpd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } 𝑤 ≤ 𝑦 ) |
64 |
|
suprcl |
⊢ ( ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ⊆ ℝ ∧ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } 𝑤 ≤ 𝑦 ) → sup ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } , ℝ , < ) ∈ ℝ ) |
65 |
15 37 63 64
|
syl3anc |
⊢ ( 𝜑 → sup ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } , ℝ , < ) ∈ ℝ ) |
66 |
4 65
|
eqeltrid |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
67 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ⊆ ℝ ) |
68 |
31 36
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ≠ ∅ ) |
69 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } 𝑤 ≤ 𝑦 ) |
70 |
|
elabrexg |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) |
71 |
23 2 70
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) |
72 |
|
suprub |
⊢ ( ( ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ⊆ ℝ ∧ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } 𝑤 ≤ 𝑦 ) ∧ 𝐵 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) → 𝐵 ≤ sup ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } , ℝ , < ) ) |
73 |
67 68 69 71 72
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ sup ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } , ℝ , < ) ) |
74 |
73 4
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ 𝐶 ) |
75 |
74
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ) |
76 |
66 75
|
jca |
⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ) ) |