Step |
Hyp |
Ref |
Expression |
1 |
|
upbdrech2.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
2 |
|
upbdrech2.bd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) |
3 |
|
upbdrech2.c |
⊢ 𝐶 = if ( 𝐴 = ∅ , 0 , sup ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } , ℝ , < ) ) |
4 |
|
iftrue |
⊢ ( 𝐴 = ∅ → if ( 𝐴 = ∅ , 0 , sup ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } , ℝ , < ) ) = 0 ) |
5 |
|
0red |
⊢ ( 𝐴 = ∅ → 0 ∈ ℝ ) |
6 |
4 5
|
eqeltrd |
⊢ ( 𝐴 = ∅ → if ( 𝐴 = ∅ , 0 , sup ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } , ℝ , < ) ) ∈ ℝ ) |
7 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → if ( 𝐴 = ∅ , 0 , sup ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } , ℝ , < ) ) ∈ ℝ ) |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ¬ 𝐴 = ∅ ) |
9 |
8
|
iffalsed |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → if ( 𝐴 = ∅ , 0 , sup ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } , ℝ , < ) ) = sup ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } , ℝ , < ) ) |
10 |
8
|
neqned |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → 𝐴 ≠ ∅ ) |
11 |
1
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
12 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) |
13 |
|
eqid |
⊢ sup ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } , ℝ , < ) = sup ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } , ℝ , < ) |
14 |
10 11 12 13
|
upbdrech |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ( sup ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } , ℝ , < ) ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ sup ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } , ℝ , < ) ) ) |
15 |
14
|
simpld |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → sup ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } , ℝ , < ) ∈ ℝ ) |
16 |
9 15
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → if ( 𝐴 = ∅ , 0 , sup ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } , ℝ , < ) ) ∈ ℝ ) |
17 |
7 16
|
pm2.61dan |
⊢ ( 𝜑 → if ( 𝐴 = ∅ , 0 , sup ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } , ℝ , < ) ) ∈ ℝ ) |
18 |
3 17
|
eqeltrid |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
19 |
|
rzal |
⊢ ( 𝐴 = ∅ → ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ) |
20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ) |
21 |
14
|
simprd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ∀ 𝑥 ∈ 𝐴 𝐵 ≤ sup ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } , ℝ , < ) ) |
22 |
|
iffalse |
⊢ ( ¬ 𝐴 = ∅ → if ( 𝐴 = ∅ , 0 , sup ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } , ℝ , < ) ) = sup ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } , ℝ , < ) ) |
23 |
3 22
|
syl5eq |
⊢ ( ¬ 𝐴 = ∅ → 𝐶 = sup ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } , ℝ , < ) ) |
24 |
23
|
breq2d |
⊢ ( ¬ 𝐴 = ∅ → ( 𝐵 ≤ 𝐶 ↔ 𝐵 ≤ sup ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } , ℝ , < ) ) ) |
25 |
24
|
ralbidv |
⊢ ( ¬ 𝐴 = ∅ → ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ sup ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } , ℝ , < ) ) ) |
26 |
25
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ sup ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } , ℝ , < ) ) ) |
27 |
21 26
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ) |
28 |
20 27
|
pm2.61dan |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ) |
29 |
18 28
|
jca |
⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ) ) |