| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upgr1e.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | upgr1e.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 3 |  | upgr1e.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑉 ) | 
						
							| 4 |  | upgr1e.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑉 ) | 
						
							| 5 |  | upgr1e.e | ⊢ ( 𝜑  →  ( iEdg ‘ 𝐺 )  =  { 〈 𝐴 ,  { 𝐵 ,  𝐶 } 〉 } ) | 
						
							| 6 |  | prex | ⊢ { 𝐵 ,  𝐶 }  ∈  V | 
						
							| 7 | 6 | snid | ⊢ { 𝐵 ,  𝐶 }  ∈  { { 𝐵 ,  𝐶 } } | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  { 𝐵 ,  𝐶 }  ∈  { { 𝐵 ,  𝐶 } } ) | 
						
							| 9 | 2 8 | fsnd | ⊢ ( 𝜑  →  { 〈 𝐴 ,  { 𝐵 ,  𝐶 } 〉 } : { 𝐴 } ⟶ { { 𝐵 ,  𝐶 } } ) | 
						
							| 10 | 3 4 | prssd | ⊢ ( 𝜑  →  { 𝐵 ,  𝐶 }  ⊆  𝑉 ) | 
						
							| 11 | 10 1 | sseqtrdi | ⊢ ( 𝜑  →  { 𝐵 ,  𝐶 }  ⊆  ( Vtx ‘ 𝐺 ) ) | 
						
							| 12 | 6 | elpw | ⊢ ( { 𝐵 ,  𝐶 }  ∈  𝒫  ( Vtx ‘ 𝐺 )  ↔  { 𝐵 ,  𝐶 }  ⊆  ( Vtx ‘ 𝐺 ) ) | 
						
							| 13 | 11 12 | sylibr | ⊢ ( 𝜑  →  { 𝐵 ,  𝐶 }  ∈  𝒫  ( Vtx ‘ 𝐺 ) ) | 
						
							| 14 | 13 3 | upgr1elem | ⊢ ( 𝜑  →  { { 𝐵 ,  𝐶 } }  ⊆  { 𝑥  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } ) | 
						
							| 15 | 9 14 | fssd | ⊢ ( 𝜑  →  { 〈 𝐴 ,  { 𝐵 ,  𝐶 } 〉 } : { 𝐴 } ⟶ { 𝑥  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } ) | 
						
							| 16 | 15 | ffdmd | ⊢ ( 𝜑  →  { 〈 𝐴 ,  { 𝐵 ,  𝐶 } 〉 } : dom  { 〈 𝐴 ,  { 𝐵 ,  𝐶 } 〉 } ⟶ { 𝑥  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } ) | 
						
							| 17 | 5 | dmeqd | ⊢ ( 𝜑  →  dom  ( iEdg ‘ 𝐺 )  =  dom  { 〈 𝐴 ,  { 𝐵 ,  𝐶 } 〉 } ) | 
						
							| 18 | 5 17 | feq12d | ⊢ ( 𝜑  →  ( ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ { 𝑥  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 }  ↔  { 〈 𝐴 ,  { 𝐵 ,  𝐶 } 〉 } : dom  { 〈 𝐴 ,  { 𝐵 ,  𝐶 } 〉 } ⟶ { 𝑥  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } ) ) | 
						
							| 19 | 16 18 | mpbird | ⊢ ( 𝜑  →  ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ { 𝑥  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } ) | 
						
							| 20 | 1 | 1vgrex | ⊢ ( 𝐵  ∈  𝑉  →  𝐺  ∈  V ) | 
						
							| 21 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 22 |  | eqid | ⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 ) | 
						
							| 23 | 21 22 | isupgr | ⊢ ( 𝐺  ∈  V  →  ( 𝐺  ∈  UPGraph  ↔  ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ { 𝑥  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } ) ) | 
						
							| 24 | 3 20 23 | 3syl | ⊢ ( 𝜑  →  ( 𝐺  ∈  UPGraph  ↔  ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ { 𝑥  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } ) ) | 
						
							| 25 | 19 24 | mpbird | ⊢ ( 𝜑  →  𝐺  ∈  UPGraph ) |