Step |
Hyp |
Ref |
Expression |
1 |
|
upgr1e.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
upgr1e.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
3 |
|
upgr1e.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
4 |
|
upgr1e.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
5 |
|
upgr1e.e |
⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) |
6 |
|
prex |
⊢ { 𝐵 , 𝐶 } ∈ V |
7 |
6
|
snid |
⊢ { 𝐵 , 𝐶 } ∈ { { 𝐵 , 𝐶 } } |
8 |
7
|
a1i |
⊢ ( 𝜑 → { 𝐵 , 𝐶 } ∈ { { 𝐵 , 𝐶 } } ) |
9 |
2 8
|
fsnd |
⊢ ( 𝜑 → { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } : { 𝐴 } ⟶ { { 𝐵 , 𝐶 } } ) |
10 |
3 4
|
prssd |
⊢ ( 𝜑 → { 𝐵 , 𝐶 } ⊆ 𝑉 ) |
11 |
10 1
|
sseqtrdi |
⊢ ( 𝜑 → { 𝐵 , 𝐶 } ⊆ ( Vtx ‘ 𝐺 ) ) |
12 |
6
|
elpw |
⊢ ( { 𝐵 , 𝐶 } ∈ 𝒫 ( Vtx ‘ 𝐺 ) ↔ { 𝐵 , 𝐶 } ⊆ ( Vtx ‘ 𝐺 ) ) |
13 |
11 12
|
sylibr |
⊢ ( 𝜑 → { 𝐵 , 𝐶 } ∈ 𝒫 ( Vtx ‘ 𝐺 ) ) |
14 |
13 3
|
upgr1elem |
⊢ ( 𝜑 → { { 𝐵 , 𝐶 } } ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
15 |
9 14
|
fssd |
⊢ ( 𝜑 → { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } : { 𝐴 } ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
16 |
15
|
ffdmd |
⊢ ( 𝜑 → { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } : dom { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
17 |
5
|
dmeqd |
⊢ ( 𝜑 → dom ( iEdg ‘ 𝐺 ) = dom { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) |
18 |
5 17
|
feq12d |
⊢ ( 𝜑 → ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ↔ { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } : dom { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
19 |
16 18
|
mpbird |
⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
20 |
1
|
1vgrex |
⊢ ( 𝐵 ∈ 𝑉 → 𝐺 ∈ V ) |
21 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
22 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
23 |
21 22
|
isupgr |
⊢ ( 𝐺 ∈ V → ( 𝐺 ∈ UPGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
24 |
3 20 23
|
3syl |
⊢ ( 𝜑 → ( 𝐺 ∈ UPGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
25 |
19 24
|
mpbird |
⊢ ( 𝜑 → 𝐺 ∈ UPGraph ) |