Step |
Hyp |
Ref |
Expression |
1 |
|
upgr1elem.s |
⊢ ( 𝜑 → { 𝐵 , 𝐶 } ∈ 𝑆 ) |
2 |
|
upgr1elem.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
3 |
|
fveq2 |
⊢ ( 𝑥 = { 𝐵 , 𝐶 } → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ { 𝐵 , 𝐶 } ) ) |
4 |
3
|
breq1d |
⊢ ( 𝑥 = { 𝐵 , 𝐶 } → ( ( ♯ ‘ 𝑥 ) ≤ 2 ↔ ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 ) ) |
5 |
|
prnzg |
⊢ ( 𝐵 ∈ 𝑊 → { 𝐵 , 𝐶 } ≠ ∅ ) |
6 |
2 5
|
syl |
⊢ ( 𝜑 → { 𝐵 , 𝐶 } ≠ ∅ ) |
7 |
|
eldifsn |
⊢ ( { 𝐵 , 𝐶 } ∈ ( 𝑆 ∖ { ∅ } ) ↔ ( { 𝐵 , 𝐶 } ∈ 𝑆 ∧ { 𝐵 , 𝐶 } ≠ ∅ ) ) |
8 |
1 6 7
|
sylanbrc |
⊢ ( 𝜑 → { 𝐵 , 𝐶 } ∈ ( 𝑆 ∖ { ∅ } ) ) |
9 |
|
hashprlei |
⊢ ( { 𝐵 , 𝐶 } ∈ Fin ∧ ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 ) |
10 |
9
|
simpri |
⊢ ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 |
11 |
10
|
a1i |
⊢ ( 𝜑 → ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 ) |
12 |
4 8 11
|
elrabd |
⊢ ( 𝜑 → { 𝐵 , 𝐶 } ∈ { 𝑥 ∈ ( 𝑆 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
13 |
12
|
snssd |
⊢ ( 𝜑 → { { 𝐵 , 𝐶 } } ⊆ { 𝑥 ∈ ( 𝑆 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |