Metamath Proof Explorer


Theorem upgr1elem

Description: Lemma for upgr1e and uspgr1e . (Contributed by AV, 16-Oct-2020)

Ref Expression
Hypotheses upgr1elem.s ( 𝜑 → { 𝐵 , 𝐶 } ∈ 𝑆 )
upgr1elem.b ( 𝜑𝐵𝑊 )
Assertion upgr1elem ( 𝜑 → { { 𝐵 , 𝐶 } } ⊆ { 𝑥 ∈ ( 𝑆 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } )

Proof

Step Hyp Ref Expression
1 upgr1elem.s ( 𝜑 → { 𝐵 , 𝐶 } ∈ 𝑆 )
2 upgr1elem.b ( 𝜑𝐵𝑊 )
3 fveq2 ( 𝑥 = { 𝐵 , 𝐶 } → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ { 𝐵 , 𝐶 } ) )
4 3 breq1d ( 𝑥 = { 𝐵 , 𝐶 } → ( ( ♯ ‘ 𝑥 ) ≤ 2 ↔ ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 ) )
5 prnzg ( 𝐵𝑊 → { 𝐵 , 𝐶 } ≠ ∅ )
6 2 5 syl ( 𝜑 → { 𝐵 , 𝐶 } ≠ ∅ )
7 eldifsn ( { 𝐵 , 𝐶 } ∈ ( 𝑆 ∖ { ∅ } ) ↔ ( { 𝐵 , 𝐶 } ∈ 𝑆 ∧ { 𝐵 , 𝐶 } ≠ ∅ ) )
8 1 6 7 sylanbrc ( 𝜑 → { 𝐵 , 𝐶 } ∈ ( 𝑆 ∖ { ∅ } ) )
9 hashprlei ( { 𝐵 , 𝐶 } ∈ Fin ∧ ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 )
10 9 simpri ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2
11 10 a1i ( 𝜑 → ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 )
12 4 8 11 elrabd ( 𝜑 → { 𝐵 , 𝐶 } ∈ { 𝑥 ∈ ( 𝑆 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } )
13 12 snssd ( 𝜑 → { { 𝐵 , 𝐶 } } ⊆ { 𝑥 ∈ ( 𝑆 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } )