| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upgr1elem.s | ⊢ ( 𝜑  →  { 𝐵 ,  𝐶 }  ∈  𝑆 ) | 
						
							| 2 |  | upgr1elem.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑊 ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑥  =  { 𝐵 ,  𝐶 }  →  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ { 𝐵 ,  𝐶 } ) ) | 
						
							| 4 | 3 | breq1d | ⊢ ( 𝑥  =  { 𝐵 ,  𝐶 }  →  ( ( ♯ ‘ 𝑥 )  ≤  2  ↔  ( ♯ ‘ { 𝐵 ,  𝐶 } )  ≤  2 ) ) | 
						
							| 5 |  | prnzg | ⊢ ( 𝐵  ∈  𝑊  →  { 𝐵 ,  𝐶 }  ≠  ∅ ) | 
						
							| 6 | 2 5 | syl | ⊢ ( 𝜑  →  { 𝐵 ,  𝐶 }  ≠  ∅ ) | 
						
							| 7 |  | eldifsn | ⊢ ( { 𝐵 ,  𝐶 }  ∈  ( 𝑆  ∖  { ∅ } )  ↔  ( { 𝐵 ,  𝐶 }  ∈  𝑆  ∧  { 𝐵 ,  𝐶 }  ≠  ∅ ) ) | 
						
							| 8 | 1 6 7 | sylanbrc | ⊢ ( 𝜑  →  { 𝐵 ,  𝐶 }  ∈  ( 𝑆  ∖  { ∅ } ) ) | 
						
							| 9 |  | hashprlei | ⊢ ( { 𝐵 ,  𝐶 }  ∈  Fin  ∧  ( ♯ ‘ { 𝐵 ,  𝐶 } )  ≤  2 ) | 
						
							| 10 | 9 | simpri | ⊢ ( ♯ ‘ { 𝐵 ,  𝐶 } )  ≤  2 | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝐵 ,  𝐶 } )  ≤  2 ) | 
						
							| 12 | 4 8 11 | elrabd | ⊢ ( 𝜑  →  { 𝐵 ,  𝐶 }  ∈  { 𝑥  ∈  ( 𝑆  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } ) | 
						
							| 13 | 12 | snssd | ⊢ ( 𝜑  →  { { 𝐵 ,  𝐶 } }  ⊆  { 𝑥  ∈  ( 𝑆  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } ) |