Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Vtx ‘ 〈 𝑉 , { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } 〉 ) = ( Vtx ‘ 〈 𝑉 , { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } 〉 ) |
2 |
|
simplr |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐴 ∈ 𝑋 ) |
3 |
|
simprl |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐵 ∈ 𝑉 ) |
4 |
|
simpl |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ) → 𝑉 ∈ 𝑊 ) |
5 |
|
snex |
⊢ { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ∈ V |
6 |
5
|
a1i |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ∈ V ) |
7 |
|
opvtxfv |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ∈ V ) → ( Vtx ‘ 〈 𝑉 , { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } 〉 ) = 𝑉 ) |
8 |
4 6 7
|
syl2an |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( Vtx ‘ 〈 𝑉 , { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } 〉 ) = 𝑉 ) |
9 |
3 8
|
eleqtrrd |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐵 ∈ ( Vtx ‘ 〈 𝑉 , { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } 〉 ) ) |
10 |
|
simprr |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐶 ∈ 𝑉 ) |
11 |
10 8
|
eleqtrrd |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐶 ∈ ( Vtx ‘ 〈 𝑉 , { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } 〉 ) ) |
12 |
|
opiedgfv |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ∈ V ) → ( iEdg ‘ 〈 𝑉 , { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } 〉 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) |
13 |
4 6 12
|
syl2an |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( iEdg ‘ 〈 𝑉 , { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } 〉 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) |
14 |
1 2 9 11 13
|
upgr1e |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 〈 𝑉 , { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } 〉 ∈ UPGraph ) |