| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eqid | 
							⊢ ( Vtx ‘ 𝑔 )  =  ( Vtx ‘ 𝑔 )  | 
						
						
							| 2 | 
							
								
							 | 
							simpllr | 
							⊢ ( ( ( ( 𝑉  ∈  𝑊  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( ( Vtx ‘ 𝑔 )  =  𝑉  ∧  ( iEdg ‘ 𝑔 )  =  { 〈 𝐴 ,  { 𝐵 ,  𝐶 } 〉 } ) )  →  𝐴  ∈  𝑋 )  | 
						
						
							| 3 | 
							
								
							 | 
							simplrl | 
							⊢ ( ( ( ( 𝑉  ∈  𝑊  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( ( Vtx ‘ 𝑔 )  =  𝑉  ∧  ( iEdg ‘ 𝑔 )  =  { 〈 𝐴 ,  { 𝐵 ,  𝐶 } 〉 } ) )  →  𝐵  ∈  𝑉 )  | 
						
						
							| 4 | 
							
								
							 | 
							eleq2 | 
							⊢ ( ( Vtx ‘ 𝑔 )  =  𝑉  →  ( 𝐵  ∈  ( Vtx ‘ 𝑔 )  ↔  𝐵  ∈  𝑉 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							ad2antrl | 
							⊢ ( ( ( ( 𝑉  ∈  𝑊  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( ( Vtx ‘ 𝑔 )  =  𝑉  ∧  ( iEdg ‘ 𝑔 )  =  { 〈 𝐴 ,  { 𝐵 ,  𝐶 } 〉 } ) )  →  ( 𝐵  ∈  ( Vtx ‘ 𝑔 )  ↔  𝐵  ∈  𝑉 ) )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							mpbird | 
							⊢ ( ( ( ( 𝑉  ∈  𝑊  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( ( Vtx ‘ 𝑔 )  =  𝑉  ∧  ( iEdg ‘ 𝑔 )  =  { 〈 𝐴 ,  { 𝐵 ,  𝐶 } 〉 } ) )  →  𝐵  ∈  ( Vtx ‘ 𝑔 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							simplrr | 
							⊢ ( ( ( ( 𝑉  ∈  𝑊  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( ( Vtx ‘ 𝑔 )  =  𝑉  ∧  ( iEdg ‘ 𝑔 )  =  { 〈 𝐴 ,  { 𝐵 ,  𝐶 } 〉 } ) )  →  𝐶  ∈  𝑉 )  | 
						
						
							| 8 | 
							
								
							 | 
							eleq2 | 
							⊢ ( ( Vtx ‘ 𝑔 )  =  𝑉  →  ( 𝐶  ∈  ( Vtx ‘ 𝑔 )  ↔  𝐶  ∈  𝑉 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							ad2antrl | 
							⊢ ( ( ( ( 𝑉  ∈  𝑊  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( ( Vtx ‘ 𝑔 )  =  𝑉  ∧  ( iEdg ‘ 𝑔 )  =  { 〈 𝐴 ,  { 𝐵 ,  𝐶 } 〉 } ) )  →  ( 𝐶  ∈  ( Vtx ‘ 𝑔 )  ↔  𝐶  ∈  𝑉 ) )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							mpbird | 
							⊢ ( ( ( ( 𝑉  ∈  𝑊  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( ( Vtx ‘ 𝑔 )  =  𝑉  ∧  ( iEdg ‘ 𝑔 )  =  { 〈 𝐴 ,  { 𝐵 ,  𝐶 } 〉 } ) )  →  𝐶  ∈  ( Vtx ‘ 𝑔 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( ( 𝑉  ∈  𝑊  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( ( Vtx ‘ 𝑔 )  =  𝑉  ∧  ( iEdg ‘ 𝑔 )  =  { 〈 𝐴 ,  { 𝐵 ,  𝐶 } 〉 } ) )  →  ( iEdg ‘ 𝑔 )  =  { 〈 𝐴 ,  { 𝐵 ,  𝐶 } 〉 } )  | 
						
						
							| 12 | 
							
								1 2 6 10 11
							 | 
							upgr1e | 
							⊢ ( ( ( ( 𝑉  ∈  𝑊  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( ( Vtx ‘ 𝑔 )  =  𝑉  ∧  ( iEdg ‘ 𝑔 )  =  { 〈 𝐴 ,  { 𝐵 ,  𝐶 } 〉 } ) )  →  𝑔  ∈  UPGraph )  | 
						
						
							| 13 | 
							
								12
							 | 
							ex | 
							⊢ ( ( ( 𝑉  ∈  𝑊  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( ( Vtx ‘ 𝑔 )  =  𝑉  ∧  ( iEdg ‘ 𝑔 )  =  { 〈 𝐴 ,  { 𝐵 ,  𝐶 } 〉 } )  →  𝑔  ∈  UPGraph ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							alrimiv | 
							⊢ ( ( ( 𝑉  ∈  𝑊  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ∀ 𝑔 ( ( ( Vtx ‘ 𝑔 )  =  𝑉  ∧  ( iEdg ‘ 𝑔 )  =  { 〈 𝐴 ,  { 𝐵 ,  𝐶 } 〉 } )  →  𝑔  ∈  UPGraph ) )  | 
						
						
							| 15 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝑉  ∈  𝑊  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  𝑉  ∈  𝑊 )  | 
						
						
							| 16 | 
							
								
							 | 
							snex | 
							⊢ { 〈 𝐴 ,  { 𝐵 ,  𝐶 } 〉 }  ∈  V  | 
						
						
							| 17 | 
							
								16
							 | 
							a1i | 
							⊢ ( ( ( 𝑉  ∈  𝑊  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  { 〈 𝐴 ,  { 𝐵 ,  𝐶 } 〉 }  ∈  V )  | 
						
						
							| 18 | 
							
								14 15 17
							 | 
							gropeld | 
							⊢ ( ( ( 𝑉  ∈  𝑊  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  〈 𝑉 ,  { 〈 𝐴 ,  { 𝐵 ,  𝐶 } 〉 } 〉  ∈  UPGraph )  |