Step |
Hyp |
Ref |
Expression |
1 |
|
upgr1wlkd.p |
⊢ 𝑃 = 〈“ 𝑋 𝑌 ”〉 |
2 |
|
upgr1wlkd.f |
⊢ 𝐹 = 〈“ 𝐽 ”〉 |
3 |
|
upgr1wlkd.x |
⊢ ( 𝜑 → 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) |
4 |
|
upgr1wlkd.y |
⊢ ( 𝜑 → 𝑌 ∈ ( Vtx ‘ 𝐺 ) ) |
5 |
|
upgr1wlkd.j |
⊢ ( 𝜑 → ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑌 } ) |
6 |
|
preq2 |
⊢ ( 𝑌 = 𝑋 → { 𝑋 , 𝑌 } = { 𝑋 , 𝑋 } ) |
7 |
6
|
eqeq2d |
⊢ ( 𝑌 = 𝑋 → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑌 } ↔ ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑋 } ) ) |
8 |
7
|
eqcoms |
⊢ ( 𝑋 = 𝑌 → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑌 } ↔ ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑋 } ) ) |
9 |
|
simpl |
⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑋 } ∧ 𝜑 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑋 } ) |
10 |
|
dfsn2 |
⊢ { 𝑋 } = { 𝑋 , 𝑋 } |
11 |
9 10
|
eqtr4di |
⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑋 } ∧ 𝜑 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 } ) |
12 |
11
|
ex |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑋 } → ( 𝜑 → ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 } ) ) |
13 |
8 12
|
syl6bi |
⊢ ( 𝑋 = 𝑌 → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑌 } → ( 𝜑 → ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 } ) ) ) |
14 |
13
|
com13 |
⊢ ( 𝜑 → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑌 } → ( 𝑋 = 𝑌 → ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 } ) ) ) |
15 |
5 14
|
mpd |
⊢ ( 𝜑 → ( 𝑋 = 𝑌 → ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 } ) ) |
16 |
15
|
imp |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 } ) |