Step |
Hyp |
Ref |
Expression |
1 |
|
upgr1wlkd.p |
⊢ 𝑃 = 〈“ 𝑋 𝑌 ”〉 |
2 |
|
upgr1wlkd.f |
⊢ 𝐹 = 〈“ 𝐽 ”〉 |
3 |
|
upgr1wlkd.x |
⊢ ( 𝜑 → 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) |
4 |
|
upgr1wlkd.y |
⊢ ( 𝜑 → 𝑌 ∈ ( Vtx ‘ 𝐺 ) ) |
5 |
|
upgr1wlkd.j |
⊢ ( 𝜑 → ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑌 } ) |
6 |
|
ssid |
⊢ { 𝑋 , 𝑌 } ⊆ { 𝑋 , 𝑌 } |
7 |
|
sseq2 |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑌 } → ( { 𝑋 , 𝑌 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) ↔ { 𝑋 , 𝑌 } ⊆ { 𝑋 , 𝑌 } ) ) |
8 |
7
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑌 } ) → ( { 𝑋 , 𝑌 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) ↔ { 𝑋 , 𝑌 } ⊆ { 𝑋 , 𝑌 } ) ) |
9 |
6 8
|
mpbiri |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑌 } ) → { 𝑋 , 𝑌 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) ) |
10 |
5 9
|
mpidan |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → { 𝑋 , 𝑌 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) ) |