Step |
Hyp |
Ref |
Expression |
1 |
|
upgr3v3e3cycl.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
2 |
|
upgr3v3e3cycl.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
3 |
|
cyclprop |
⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
4 |
|
pthiswlk |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
5 |
1
|
upgrwlkvtxedg |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ∈ 𝐸 ) |
6 |
|
fveq2 |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = ( 𝑃 ‘ 3 ) ) |
7 |
6
|
eqeq2d |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ↔ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) ) |
8 |
7
|
anbi2d |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ↔ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) ) ) |
9 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 3 ) ) |
10 |
|
fzo0to3tp |
⊢ ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
11 |
9 10
|
eqtrdi |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = { 0 , 1 , 2 } ) |
12 |
11
|
raleqdv |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ∈ 𝐸 ↔ ∀ 𝑘 ∈ { 0 , 1 , 2 } { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ∈ 𝐸 ) ) |
13 |
|
c0ex |
⊢ 0 ∈ V |
14 |
|
1ex |
⊢ 1 ∈ V |
15 |
|
2ex |
⊢ 2 ∈ V |
16 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 0 ) ) |
17 |
|
fv0p1e1 |
⊢ ( 𝑘 = 0 → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ 1 ) ) |
18 |
16 17
|
preq12d |
⊢ ( 𝑘 = 0 → { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) |
19 |
18
|
eleq1d |
⊢ ( 𝑘 = 0 → ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ∈ 𝐸 ↔ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ 𝐸 ) ) |
20 |
|
fveq2 |
⊢ ( 𝑘 = 1 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 1 ) ) |
21 |
|
oveq1 |
⊢ ( 𝑘 = 1 → ( 𝑘 + 1 ) = ( 1 + 1 ) ) |
22 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
23 |
21 22
|
eqtrdi |
⊢ ( 𝑘 = 1 → ( 𝑘 + 1 ) = 2 ) |
24 |
23
|
fveq2d |
⊢ ( 𝑘 = 1 → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ 2 ) ) |
25 |
20 24
|
preq12d |
⊢ ( 𝑘 = 1 → { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
26 |
25
|
eleq1d |
⊢ ( 𝑘 = 1 → ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ∈ 𝐸 ↔ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ 𝐸 ) ) |
27 |
|
fveq2 |
⊢ ( 𝑘 = 2 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 2 ) ) |
28 |
|
oveq1 |
⊢ ( 𝑘 = 2 → ( 𝑘 + 1 ) = ( 2 + 1 ) ) |
29 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
30 |
28 29
|
eqtrdi |
⊢ ( 𝑘 = 2 → ( 𝑘 + 1 ) = 3 ) |
31 |
30
|
fveq2d |
⊢ ( 𝑘 = 2 → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ 3 ) ) |
32 |
27 31
|
preq12d |
⊢ ( 𝑘 = 2 → { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ) |
33 |
32
|
eleq1d |
⊢ ( 𝑘 = 2 → ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ∈ 𝐸 ↔ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ 𝐸 ) ) |
34 |
13 14 15 19 26 33
|
raltp |
⊢ ( ∀ 𝑘 ∈ { 0 , 1 , 2 } { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ∈ 𝐸 ↔ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ 𝐸 ) ) |
35 |
12 34
|
bitrdi |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ∈ 𝐸 ↔ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ 𝐸 ) ) ) |
36 |
8 35
|
anbi12d |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ∈ 𝐸 ) ↔ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) ∧ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ 𝐸 ) ) ) ) |
37 |
2
|
wlkp |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
38 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( 0 ... 3 ) ) |
39 |
38
|
feq2d |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ↔ 𝑃 : ( 0 ... 3 ) ⟶ 𝑉 ) ) |
40 |
|
id |
⊢ ( 𝑃 : ( 0 ... 3 ) ⟶ 𝑉 → 𝑃 : ( 0 ... 3 ) ⟶ 𝑉 ) |
41 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
42 |
|
0elfz |
⊢ ( 3 ∈ ℕ0 → 0 ∈ ( 0 ... 3 ) ) |
43 |
41 42
|
mp1i |
⊢ ( 𝑃 : ( 0 ... 3 ) ⟶ 𝑉 → 0 ∈ ( 0 ... 3 ) ) |
44 |
40 43
|
ffvelrnd |
⊢ ( 𝑃 : ( 0 ... 3 ) ⟶ 𝑉 → ( 𝑃 ‘ 0 ) ∈ 𝑉 ) |
45 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
46 |
|
1lt3 |
⊢ 1 < 3 |
47 |
|
fvffz0 |
⊢ ( ( ( 3 ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ 1 < 3 ) ∧ 𝑃 : ( 0 ... 3 ) ⟶ 𝑉 ) → ( 𝑃 ‘ 1 ) ∈ 𝑉 ) |
48 |
47
|
ex |
⊢ ( ( 3 ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ 1 < 3 ) → ( 𝑃 : ( 0 ... 3 ) ⟶ 𝑉 → ( 𝑃 ‘ 1 ) ∈ 𝑉 ) ) |
49 |
41 45 46 48
|
mp3an |
⊢ ( 𝑃 : ( 0 ... 3 ) ⟶ 𝑉 → ( 𝑃 ‘ 1 ) ∈ 𝑉 ) |
50 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
51 |
|
2lt3 |
⊢ 2 < 3 |
52 |
|
fvffz0 |
⊢ ( ( ( 3 ∈ ℕ0 ∧ 2 ∈ ℕ0 ∧ 2 < 3 ) ∧ 𝑃 : ( 0 ... 3 ) ⟶ 𝑉 ) → ( 𝑃 ‘ 2 ) ∈ 𝑉 ) |
53 |
52
|
ex |
⊢ ( ( 3 ∈ ℕ0 ∧ 2 ∈ ℕ0 ∧ 2 < 3 ) → ( 𝑃 : ( 0 ... 3 ) ⟶ 𝑉 → ( 𝑃 ‘ 2 ) ∈ 𝑉 ) ) |
54 |
41 50 51 53
|
mp3an |
⊢ ( 𝑃 : ( 0 ... 3 ) ⟶ 𝑉 → ( 𝑃 ‘ 2 ) ∈ 𝑉 ) |
55 |
44 49 54
|
3jca |
⊢ ( 𝑃 : ( 0 ... 3 ) ⟶ 𝑉 → ( ( 𝑃 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 1 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 2 ) ∈ 𝑉 ) ) |
56 |
39 55
|
syl6bi |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( ( 𝑃 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 1 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 2 ) ∈ 𝑉 ) ) ) |
57 |
56
|
com12 |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( ( ♯ ‘ 𝐹 ) = 3 → ( ( 𝑃 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 1 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 2 ) ∈ 𝑉 ) ) ) |
58 |
4 37 57
|
3syl |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ( ♯ ‘ 𝐹 ) = 3 → ( ( 𝑃 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 1 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 2 ) ∈ 𝑉 ) ) ) |
59 |
58
|
adantr |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) → ( ( ♯ ‘ 𝐹 ) = 3 → ( ( 𝑃 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 1 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 2 ) ∈ 𝑉 ) ) ) |
60 |
59
|
adantr |
⊢ ( ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) ∧ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ 𝐸 ) ) → ( ( ♯ ‘ 𝐹 ) = 3 → ( ( 𝑃 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 1 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 2 ) ∈ 𝑉 ) ) ) |
61 |
60
|
impcom |
⊢ ( ( ( ♯ ‘ 𝐹 ) = 3 ∧ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) ∧ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ 𝐸 ) ) ) → ( ( 𝑃 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 1 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 2 ) ∈ 𝑉 ) ) |
62 |
|
preq2 |
⊢ ( ( 𝑃 ‘ 3 ) = ( 𝑃 ‘ 0 ) → { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 0 ) } ) |
63 |
62
|
eqcoms |
⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) → { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 0 ) } ) |
64 |
63
|
adantl |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) → { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 0 ) } ) |
65 |
64
|
eleq1d |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) → ( { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ 𝐸 ↔ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 0 ) } ∈ 𝐸 ) ) |
66 |
65
|
3anbi3d |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) → ( ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ 𝐸 ) ↔ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 0 ) } ∈ 𝐸 ) ) ) |
67 |
66
|
biimpa |
⊢ ( ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) ∧ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ 𝐸 ) ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 0 ) } ∈ 𝐸 ) ) |
68 |
67
|
adantl |
⊢ ( ( ( ♯ ‘ 𝐹 ) = 3 ∧ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) ∧ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ 𝐸 ) ) ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 0 ) } ∈ 𝐸 ) ) |
69 |
|
simpll |
⊢ ( ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) |
70 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( 1 < ( ♯ ‘ 𝐹 ) ↔ 1 < 3 ) ) |
71 |
46 70
|
mpbiri |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → 1 < ( ♯ ‘ 𝐹 ) ) |
72 |
71
|
adantl |
⊢ ( ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → 1 < ( ♯ ‘ 𝐹 ) ) |
73 |
|
3nn |
⊢ 3 ∈ ℕ |
74 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ 3 ) ↔ 3 ∈ ℕ ) |
75 |
73 74
|
mpbir |
⊢ 0 ∈ ( 0 ..^ 3 ) |
76 |
75 9
|
eleqtrrid |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
77 |
76
|
adantl |
⊢ ( ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
78 |
|
pthdadjvtx |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ 1 < ( ♯ ‘ 𝐹 ) ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( 0 + 1 ) ) ) |
79 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
80 |
79
|
fveq2i |
⊢ ( 𝑃 ‘ 1 ) = ( 𝑃 ‘ ( 0 + 1 ) ) |
81 |
80
|
neeq2i |
⊢ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ↔ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( 0 + 1 ) ) ) |
82 |
78 81
|
sylibr |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ 1 < ( ♯ ‘ 𝐹 ) ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) |
83 |
69 72 77 82
|
syl3anc |
⊢ ( ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) |
84 |
|
elfzo0 |
⊢ ( 1 ∈ ( 0 ..^ 3 ) ↔ ( 1 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 1 < 3 ) ) |
85 |
45 73 46 84
|
mpbir3an |
⊢ 1 ∈ ( 0 ..^ 3 ) |
86 |
85 9
|
eleqtrrid |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → 1 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
87 |
86
|
adantl |
⊢ ( ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → 1 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
88 |
|
pthdadjvtx |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ 1 < ( ♯ ‘ 𝐹 ) ∧ 1 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ ( 1 + 1 ) ) ) |
89 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
90 |
89
|
fveq2i |
⊢ ( 𝑃 ‘ 2 ) = ( 𝑃 ‘ ( 1 + 1 ) ) |
91 |
90
|
neeq2i |
⊢ ( ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ↔ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ ( 1 + 1 ) ) ) |
92 |
88 91
|
sylibr |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ 1 < ( ♯ ‘ 𝐹 ) ∧ 1 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) |
93 |
69 72 87 92
|
syl3anc |
⊢ ( ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) |
94 |
|
elfzo0 |
⊢ ( 2 ∈ ( 0 ..^ 3 ) ↔ ( 2 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 2 < 3 ) ) |
95 |
50 73 51 94
|
mpbir3an |
⊢ 2 ∈ ( 0 ..^ 3 ) |
96 |
95 9
|
eleqtrrid |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → 2 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
97 |
96
|
adantl |
⊢ ( ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → 2 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
98 |
|
pthdadjvtx |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ 1 < ( ♯ ‘ 𝐹 ) ∧ 2 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ ( 2 + 1 ) ) ) |
99 |
69 72 97 98
|
syl3anc |
⊢ ( ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ ( 2 + 1 ) ) ) |
100 |
|
neeq2 |
⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) → ( ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 0 ) ↔ ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 3 ) ) ) |
101 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
102 |
101
|
fveq2i |
⊢ ( 𝑃 ‘ 3 ) = ( 𝑃 ‘ ( 2 + 1 ) ) |
103 |
102
|
neeq2i |
⊢ ( ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 3 ) ↔ ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ ( 2 + 1 ) ) ) |
104 |
100 103
|
bitrdi |
⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) → ( ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 0 ) ↔ ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ ( 2 + 1 ) ) ) ) |
105 |
104
|
adantl |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) → ( ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 0 ) ↔ ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ ( 2 + 1 ) ) ) ) |
106 |
105
|
adantr |
⊢ ( ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 0 ) ↔ ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ ( 2 + 1 ) ) ) ) |
107 |
99 106
|
mpbird |
⊢ ( ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 0 ) ) |
108 |
83 93 107
|
3jca |
⊢ ( ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 0 ) ) ) |
109 |
108
|
ex |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) → ( ( ♯ ‘ 𝐹 ) = 3 → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 0 ) ) ) ) |
110 |
109
|
adantr |
⊢ ( ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) ∧ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ 𝐸 ) ) → ( ( ♯ ‘ 𝐹 ) = 3 → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 0 ) ) ) ) |
111 |
110
|
impcom |
⊢ ( ( ( ♯ ‘ 𝐹 ) = 3 ∧ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) ∧ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ 𝐸 ) ) ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 0 ) ) ) |
112 |
|
preq1 |
⊢ ( 𝑎 = ( 𝑃 ‘ 0 ) → { 𝑎 , 𝑏 } = { ( 𝑃 ‘ 0 ) , 𝑏 } ) |
113 |
112
|
eleq1d |
⊢ ( 𝑎 = ( 𝑃 ‘ 0 ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝑃 ‘ 0 ) , 𝑏 } ∈ 𝐸 ) ) |
114 |
|
preq2 |
⊢ ( 𝑎 = ( 𝑃 ‘ 0 ) → { 𝑐 , 𝑎 } = { 𝑐 , ( 𝑃 ‘ 0 ) } ) |
115 |
114
|
eleq1d |
⊢ ( 𝑎 = ( 𝑃 ‘ 0 ) → ( { 𝑐 , 𝑎 } ∈ 𝐸 ↔ { 𝑐 , ( 𝑃 ‘ 0 ) } ∈ 𝐸 ) ) |
116 |
113 115
|
3anbi13d |
⊢ ( 𝑎 = ( 𝑃 ‘ 0 ) → ( ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ↔ ( { ( 𝑃 ‘ 0 ) , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ∧ { 𝑐 , ( 𝑃 ‘ 0 ) } ∈ 𝐸 ) ) ) |
117 |
|
neeq1 |
⊢ ( 𝑎 = ( 𝑃 ‘ 0 ) → ( 𝑎 ≠ 𝑏 ↔ ( 𝑃 ‘ 0 ) ≠ 𝑏 ) ) |
118 |
|
neeq2 |
⊢ ( 𝑎 = ( 𝑃 ‘ 0 ) → ( 𝑐 ≠ 𝑎 ↔ 𝑐 ≠ ( 𝑃 ‘ 0 ) ) ) |
119 |
117 118
|
3anbi13d |
⊢ ( 𝑎 = ( 𝑃 ‘ 0 ) → ( ( 𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎 ) ↔ ( ( 𝑃 ‘ 0 ) ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ ( 𝑃 ‘ 0 ) ) ) ) |
120 |
116 119
|
anbi12d |
⊢ ( 𝑎 = ( 𝑃 ‘ 0 ) → ( ( ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎 ) ) ↔ ( ( { ( 𝑃 ‘ 0 ) , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ∧ { 𝑐 , ( 𝑃 ‘ 0 ) } ∈ 𝐸 ) ∧ ( ( 𝑃 ‘ 0 ) ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ ( 𝑃 ‘ 0 ) ) ) ) ) |
121 |
|
preq2 |
⊢ ( 𝑏 = ( 𝑃 ‘ 1 ) → { ( 𝑃 ‘ 0 ) , 𝑏 } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) |
122 |
121
|
eleq1d |
⊢ ( 𝑏 = ( 𝑃 ‘ 1 ) → ( { ( 𝑃 ‘ 0 ) , 𝑏 } ∈ 𝐸 ↔ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ 𝐸 ) ) |
123 |
|
preq1 |
⊢ ( 𝑏 = ( 𝑃 ‘ 1 ) → { 𝑏 , 𝑐 } = { ( 𝑃 ‘ 1 ) , 𝑐 } ) |
124 |
123
|
eleq1d |
⊢ ( 𝑏 = ( 𝑃 ‘ 1 ) → ( { 𝑏 , 𝑐 } ∈ 𝐸 ↔ { ( 𝑃 ‘ 1 ) , 𝑐 } ∈ 𝐸 ) ) |
125 |
122 124
|
3anbi12d |
⊢ ( 𝑏 = ( 𝑃 ‘ 1 ) → ( ( { ( 𝑃 ‘ 0 ) , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ∧ { 𝑐 , ( 𝑃 ‘ 0 ) } ∈ 𝐸 ) ↔ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 1 ) , 𝑐 } ∈ 𝐸 ∧ { 𝑐 , ( 𝑃 ‘ 0 ) } ∈ 𝐸 ) ) ) |
126 |
|
neeq2 |
⊢ ( 𝑏 = ( 𝑃 ‘ 1 ) → ( ( 𝑃 ‘ 0 ) ≠ 𝑏 ↔ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
127 |
|
neeq1 |
⊢ ( 𝑏 = ( 𝑃 ‘ 1 ) → ( 𝑏 ≠ 𝑐 ↔ ( 𝑃 ‘ 1 ) ≠ 𝑐 ) ) |
128 |
126 127
|
3anbi12d |
⊢ ( 𝑏 = ( 𝑃 ‘ 1 ) → ( ( ( 𝑃 ‘ 0 ) ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ ( 𝑃 ‘ 0 ) ) ↔ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ 𝑐 ∧ 𝑐 ≠ ( 𝑃 ‘ 0 ) ) ) ) |
129 |
125 128
|
anbi12d |
⊢ ( 𝑏 = ( 𝑃 ‘ 1 ) → ( ( ( { ( 𝑃 ‘ 0 ) , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ∧ { 𝑐 , ( 𝑃 ‘ 0 ) } ∈ 𝐸 ) ∧ ( ( 𝑃 ‘ 0 ) ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ ( 𝑃 ‘ 0 ) ) ) ↔ ( ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 1 ) , 𝑐 } ∈ 𝐸 ∧ { 𝑐 , ( 𝑃 ‘ 0 ) } ∈ 𝐸 ) ∧ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ 𝑐 ∧ 𝑐 ≠ ( 𝑃 ‘ 0 ) ) ) ) ) |
130 |
|
preq2 |
⊢ ( 𝑐 = ( 𝑃 ‘ 2 ) → { ( 𝑃 ‘ 1 ) , 𝑐 } = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
131 |
130
|
eleq1d |
⊢ ( 𝑐 = ( 𝑃 ‘ 2 ) → ( { ( 𝑃 ‘ 1 ) , 𝑐 } ∈ 𝐸 ↔ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ 𝐸 ) ) |
132 |
|
preq1 |
⊢ ( 𝑐 = ( 𝑃 ‘ 2 ) → { 𝑐 , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 0 ) } ) |
133 |
132
|
eleq1d |
⊢ ( 𝑐 = ( 𝑃 ‘ 2 ) → ( { 𝑐 , ( 𝑃 ‘ 0 ) } ∈ 𝐸 ↔ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 0 ) } ∈ 𝐸 ) ) |
134 |
131 133
|
3anbi23d |
⊢ ( 𝑐 = ( 𝑃 ‘ 2 ) → ( ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 1 ) , 𝑐 } ∈ 𝐸 ∧ { 𝑐 , ( 𝑃 ‘ 0 ) } ∈ 𝐸 ) ↔ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 0 ) } ∈ 𝐸 ) ) ) |
135 |
|
neeq2 |
⊢ ( 𝑐 = ( 𝑃 ‘ 2 ) → ( ( 𝑃 ‘ 1 ) ≠ 𝑐 ↔ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
136 |
|
neeq1 |
⊢ ( 𝑐 = ( 𝑃 ‘ 2 ) → ( 𝑐 ≠ ( 𝑃 ‘ 0 ) ↔ ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 0 ) ) ) |
137 |
135 136
|
3anbi23d |
⊢ ( 𝑐 = ( 𝑃 ‘ 2 ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ 𝑐 ∧ 𝑐 ≠ ( 𝑃 ‘ 0 ) ) ↔ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 0 ) ) ) ) |
138 |
134 137
|
anbi12d |
⊢ ( 𝑐 = ( 𝑃 ‘ 2 ) → ( ( ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 1 ) , 𝑐 } ∈ 𝐸 ∧ { 𝑐 , ( 𝑃 ‘ 0 ) } ∈ 𝐸 ) ∧ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ 𝑐 ∧ 𝑐 ≠ ( 𝑃 ‘ 0 ) ) ) ↔ ( ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 0 ) } ∈ 𝐸 ) ∧ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 0 ) ) ) ) ) |
139 |
120 129 138
|
rspc3ev |
⊢ ( ( ( ( 𝑃 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 1 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 2 ) ∈ 𝑉 ) ∧ ( ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 0 ) } ∈ 𝐸 ) ∧ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 0 ) ) ) ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎 ) ) ) |
140 |
61 68 111 139
|
syl12anc |
⊢ ( ( ( ♯ ‘ 𝐹 ) = 3 ∧ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) ∧ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ 𝐸 ) ) ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎 ) ) ) |
141 |
140
|
ex |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) ∧ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ 𝐸 ) ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎 ) ) ) ) |
142 |
36 141
|
sylbid |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ∈ 𝐸 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎 ) ) ) ) |
143 |
142
|
expd |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ∈ 𝐸 → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎 ) ) ) ) ) |
144 |
143
|
com13 |
⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ∈ 𝐸 → ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( ♯ ‘ 𝐹 ) = 3 → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎 ) ) ) ) ) |
145 |
5 144
|
syl |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) → ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( ♯ ‘ 𝐹 ) = 3 → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎 ) ) ) ) ) |
146 |
145
|
expcom |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐺 ∈ UPGraph → ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( ♯ ‘ 𝐹 ) = 3 → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎 ) ) ) ) ) ) |
147 |
146
|
com23 |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐺 ∈ UPGraph → ( ( ♯ ‘ 𝐹 ) = 3 → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎 ) ) ) ) ) ) |
148 |
147
|
expd |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( 𝐺 ∈ UPGraph → ( ( ♯ ‘ 𝐹 ) = 3 → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎 ) ) ) ) ) ) ) |
149 |
4 148
|
mpcom |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( 𝐺 ∈ UPGraph → ( ( ♯ ‘ 𝐹 ) = 3 → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎 ) ) ) ) ) ) |
150 |
149
|
imp |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐺 ∈ UPGraph → ( ( ♯ ‘ 𝐹 ) = 3 → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎 ) ) ) ) ) |
151 |
3 150
|
syl |
⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ( 𝐺 ∈ UPGraph → ( ( ♯ ‘ 𝐹 ) = 3 → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎 ) ) ) ) ) |
152 |
151
|
3imp21 |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎 ) ) ) |