Step |
Hyp |
Ref |
Expression |
1 |
|
upgrbi.x |
⊢ 𝑋 ∈ 𝑉 |
2 |
|
upgrbi.y |
⊢ 𝑌 ∈ 𝑉 |
3 |
|
prssi |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → { 𝑋 , 𝑌 } ⊆ 𝑉 ) |
4 |
1 2 3
|
mp2an |
⊢ { 𝑋 , 𝑌 } ⊆ 𝑉 |
5 |
|
prex |
⊢ { 𝑋 , 𝑌 } ∈ V |
6 |
5
|
elpw |
⊢ ( { 𝑋 , 𝑌 } ∈ 𝒫 𝑉 ↔ { 𝑋 , 𝑌 } ⊆ 𝑉 ) |
7 |
4 6
|
mpbir |
⊢ { 𝑋 , 𝑌 } ∈ 𝒫 𝑉 |
8 |
1
|
elexi |
⊢ 𝑋 ∈ V |
9 |
8
|
prnz |
⊢ { 𝑋 , 𝑌 } ≠ ∅ |
10 |
|
eldifsn |
⊢ ( { 𝑋 , 𝑌 } ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ↔ ( { 𝑋 , 𝑌 } ∈ 𝒫 𝑉 ∧ { 𝑋 , 𝑌 } ≠ ∅ ) ) |
11 |
7 9 10
|
mpbir2an |
⊢ { 𝑋 , 𝑌 } ∈ ( 𝒫 𝑉 ∖ { ∅ } ) |
12 |
|
hashprlei |
⊢ ( { 𝑋 , 𝑌 } ∈ Fin ∧ ( ♯ ‘ { 𝑋 , 𝑌 } ) ≤ 2 ) |
13 |
12
|
simpri |
⊢ ( ♯ ‘ { 𝑋 , 𝑌 } ) ≤ 2 |
14 |
|
fveq2 |
⊢ ( 𝑥 = { 𝑋 , 𝑌 } → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ { 𝑋 , 𝑌 } ) ) |
15 |
14
|
breq1d |
⊢ ( 𝑥 = { 𝑋 , 𝑌 } → ( ( ♯ ‘ 𝑥 ) ≤ 2 ↔ ( ♯ ‘ { 𝑋 , 𝑌 } ) ≤ 2 ) ) |
16 |
15
|
elrab |
⊢ ( { 𝑋 , 𝑌 } ∈ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ↔ ( { 𝑋 , 𝑌 } ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ( ♯ ‘ { 𝑋 , 𝑌 } ) ≤ 2 ) ) |
17 |
11 13 16
|
mpbir2an |
⊢ { 𝑋 , 𝑌 } ∈ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } |