| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upgredg.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | upgredg.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | edgval | ⊢ ( Edg ‘ 𝐺 )  =  ran  ( iEdg ‘ 𝐺 ) | 
						
							| 4 | 3 | a1i | ⊢ ( 𝐺  ∈  UPGraph  →  ( Edg ‘ 𝐺 )  =  ran  ( iEdg ‘ 𝐺 ) ) | 
						
							| 5 | 2 4 | eqtrid | ⊢ ( 𝐺  ∈  UPGraph  →  𝐸  =  ran  ( iEdg ‘ 𝐺 ) ) | 
						
							| 6 | 5 | eleq2d | ⊢ ( 𝐺  ∈  UPGraph  →  ( 𝐶  ∈  𝐸  ↔  𝐶  ∈  ran  ( iEdg ‘ 𝐺 ) ) ) | 
						
							| 7 |  | eqid | ⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 ) | 
						
							| 8 | 1 7 | upgrf | ⊢ ( 𝐺  ∈  UPGraph  →  ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } ) | 
						
							| 9 | 8 | frnd | ⊢ ( 𝐺  ∈  UPGraph  →  ran  ( iEdg ‘ 𝐺 )  ⊆  { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } ) | 
						
							| 10 | 9 | sseld | ⊢ ( 𝐺  ∈  UPGraph  →  ( 𝐶  ∈  ran  ( iEdg ‘ 𝐺 )  →  𝐶  ∈  { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } ) ) | 
						
							| 11 | 6 10 | sylbid | ⊢ ( 𝐺  ∈  UPGraph  →  ( 𝐶  ∈  𝐸  →  𝐶  ∈  { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } ) ) | 
						
							| 12 | 11 | imp | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐶  ∈  𝐸 )  →  𝐶  ∈  { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑥  =  𝐶  →  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝐶 ) ) | 
						
							| 14 | 13 | breq1d | ⊢ ( 𝑥  =  𝐶  →  ( ( ♯ ‘ 𝑥 )  ≤  2  ↔  ( ♯ ‘ 𝐶 )  ≤  2 ) ) | 
						
							| 15 | 14 | elrab | ⊢ ( 𝐶  ∈  { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 }  ↔  ( 𝐶  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∧  ( ♯ ‘ 𝐶 )  ≤  2 ) ) | 
						
							| 16 |  | hashle2prv | ⊢ ( 𝐶  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  →  ( ( ♯ ‘ 𝐶 )  ≤  2  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 𝐶  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 17 | 16 | biimpa | ⊢ ( ( 𝐶  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∧  ( ♯ ‘ 𝐶 )  ≤  2 )  →  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 𝐶  =  { 𝑎 ,  𝑏 } ) | 
						
							| 18 | 15 17 | sylbi | ⊢ ( 𝐶  ∈  { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 }  →  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 𝐶  =  { 𝑎 ,  𝑏 } ) | 
						
							| 19 | 12 18 | syl | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐶  ∈  𝐸 )  →  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 𝐶  =  { 𝑎 ,  𝑏 } ) |