| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upgredg.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | upgredg.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 | 1 2 | upgredg | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐶  ∈  𝐸 )  →  ∃ 𝑎  ∈  𝑉 ∃ 𝑐  ∈  𝑉 𝐶  =  { 𝑎 ,  𝑐 } ) | 
						
							| 4 | 3 | 3adant3 | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐶  ∈  𝐸  ∧  𝐴  ∈  𝐶 )  →  ∃ 𝑎  ∈  𝑉 ∃ 𝑐  ∈  𝑉 𝐶  =  { 𝑎 ,  𝑐 } ) | 
						
							| 5 |  | elpr2elpr | ⊢ ( ( 𝑎  ∈  𝑉  ∧  𝑐  ∈  𝑉  ∧  𝐴  ∈  { 𝑎 ,  𝑐 } )  →  ∃ 𝑏  ∈  𝑉 { 𝑎 ,  𝑐 }  =  { 𝐴 ,  𝑏 } ) | 
						
							| 6 | 5 | 3expia | ⊢ ( ( 𝑎  ∈  𝑉  ∧  𝑐  ∈  𝑉 )  →  ( 𝐴  ∈  { 𝑎 ,  𝑐 }  →  ∃ 𝑏  ∈  𝑉 { 𝑎 ,  𝑐 }  =  { 𝐴 ,  𝑏 } ) ) | 
						
							| 7 |  | eleq2 | ⊢ ( 𝐶  =  { 𝑎 ,  𝑐 }  →  ( 𝐴  ∈  𝐶  ↔  𝐴  ∈  { 𝑎 ,  𝑐 } ) ) | 
						
							| 8 |  | eqeq1 | ⊢ ( 𝐶  =  { 𝑎 ,  𝑐 }  →  ( 𝐶  =  { 𝐴 ,  𝑏 }  ↔  { 𝑎 ,  𝑐 }  =  { 𝐴 ,  𝑏 } ) ) | 
						
							| 9 | 8 | rexbidv | ⊢ ( 𝐶  =  { 𝑎 ,  𝑐 }  →  ( ∃ 𝑏  ∈  𝑉 𝐶  =  { 𝐴 ,  𝑏 }  ↔  ∃ 𝑏  ∈  𝑉 { 𝑎 ,  𝑐 }  =  { 𝐴 ,  𝑏 } ) ) | 
						
							| 10 | 7 9 | imbi12d | ⊢ ( 𝐶  =  { 𝑎 ,  𝑐 }  →  ( ( 𝐴  ∈  𝐶  →  ∃ 𝑏  ∈  𝑉 𝐶  =  { 𝐴 ,  𝑏 } )  ↔  ( 𝐴  ∈  { 𝑎 ,  𝑐 }  →  ∃ 𝑏  ∈  𝑉 { 𝑎 ,  𝑐 }  =  { 𝐴 ,  𝑏 } ) ) ) | 
						
							| 11 | 6 10 | imbitrrid | ⊢ ( 𝐶  =  { 𝑎 ,  𝑐 }  →  ( ( 𝑎  ∈  𝑉  ∧  𝑐  ∈  𝑉 )  →  ( 𝐴  ∈  𝐶  →  ∃ 𝑏  ∈  𝑉 𝐶  =  { 𝐴 ,  𝑏 } ) ) ) | 
						
							| 12 | 11 | com13 | ⊢ ( 𝐴  ∈  𝐶  →  ( ( 𝑎  ∈  𝑉  ∧  𝑐  ∈  𝑉 )  →  ( 𝐶  =  { 𝑎 ,  𝑐 }  →  ∃ 𝑏  ∈  𝑉 𝐶  =  { 𝐴 ,  𝑏 } ) ) ) | 
						
							| 13 | 12 | 3ad2ant3 | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐶  ∈  𝐸  ∧  𝐴  ∈  𝐶 )  →  ( ( 𝑎  ∈  𝑉  ∧  𝑐  ∈  𝑉 )  →  ( 𝐶  =  { 𝑎 ,  𝑐 }  →  ∃ 𝑏  ∈  𝑉 𝐶  =  { 𝐴 ,  𝑏 } ) ) ) | 
						
							| 14 | 13 | rexlimdvv | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐶  ∈  𝐸  ∧  𝐴  ∈  𝐶 )  →  ( ∃ 𝑎  ∈  𝑉 ∃ 𝑐  ∈  𝑉 𝐶  =  { 𝑎 ,  𝑐 }  →  ∃ 𝑏  ∈  𝑉 𝐶  =  { 𝐴 ,  𝑏 } ) ) | 
						
							| 15 | 4 14 | mpd | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐶  ∈  𝐸  ∧  𝐴  ∈  𝐶 )  →  ∃ 𝑏  ∈  𝑉 𝐶  =  { 𝐴 ,  𝑏 } ) |