Step |
Hyp |
Ref |
Expression |
1 |
|
upgredg.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
upgredg.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
1 2
|
upgredg |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 𝐶 = { 𝑎 , 𝑐 } ) |
4 |
3
|
3adant3 |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ 𝐴 ∈ 𝐶 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 𝐶 = { 𝑎 , 𝑐 } ) |
5 |
|
elpr2elpr |
⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ∧ 𝐴 ∈ { 𝑎 , 𝑐 } ) → ∃ 𝑏 ∈ 𝑉 { 𝑎 , 𝑐 } = { 𝐴 , 𝑏 } ) |
6 |
5
|
3expia |
⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝐴 ∈ { 𝑎 , 𝑐 } → ∃ 𝑏 ∈ 𝑉 { 𝑎 , 𝑐 } = { 𝐴 , 𝑏 } ) ) |
7 |
|
eleq2 |
⊢ ( 𝐶 = { 𝑎 , 𝑐 } → ( 𝐴 ∈ 𝐶 ↔ 𝐴 ∈ { 𝑎 , 𝑐 } ) ) |
8 |
|
eqeq1 |
⊢ ( 𝐶 = { 𝑎 , 𝑐 } → ( 𝐶 = { 𝐴 , 𝑏 } ↔ { 𝑎 , 𝑐 } = { 𝐴 , 𝑏 } ) ) |
9 |
8
|
rexbidv |
⊢ ( 𝐶 = { 𝑎 , 𝑐 } → ( ∃ 𝑏 ∈ 𝑉 𝐶 = { 𝐴 , 𝑏 } ↔ ∃ 𝑏 ∈ 𝑉 { 𝑎 , 𝑐 } = { 𝐴 , 𝑏 } ) ) |
10 |
7 9
|
imbi12d |
⊢ ( 𝐶 = { 𝑎 , 𝑐 } → ( ( 𝐴 ∈ 𝐶 → ∃ 𝑏 ∈ 𝑉 𝐶 = { 𝐴 , 𝑏 } ) ↔ ( 𝐴 ∈ { 𝑎 , 𝑐 } → ∃ 𝑏 ∈ 𝑉 { 𝑎 , 𝑐 } = { 𝐴 , 𝑏 } ) ) ) |
11 |
6 10
|
syl5ibr |
⊢ ( 𝐶 = { 𝑎 , 𝑐 } → ( ( 𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝐴 ∈ 𝐶 → ∃ 𝑏 ∈ 𝑉 𝐶 = { 𝐴 , 𝑏 } ) ) ) |
12 |
11
|
com13 |
⊢ ( 𝐴 ∈ 𝐶 → ( ( 𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝐶 = { 𝑎 , 𝑐 } → ∃ 𝑏 ∈ 𝑉 𝐶 = { 𝐴 , 𝑏 } ) ) ) |
13 |
12
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ 𝐴 ∈ 𝐶 ) → ( ( 𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝐶 = { 𝑎 , 𝑐 } → ∃ 𝑏 ∈ 𝑉 𝐶 = { 𝐴 , 𝑏 } ) ) ) |
14 |
13
|
rexlimdvv |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ 𝐴 ∈ 𝐶 ) → ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 𝐶 = { 𝑎 , 𝑐 } → ∃ 𝑏 ∈ 𝑉 𝐶 = { 𝐴 , 𝑏 } ) ) |
15 |
4 14
|
mpd |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ 𝐴 ∈ 𝐶 ) → ∃ 𝑏 ∈ 𝑉 𝐶 = { 𝐴 , 𝑏 } ) |