Metamath Proof Explorer


Theorem upgredg2vtx

Description: For a vertex incident to an edge there is another vertex incident to the edge in a pseudograph. (Contributed by AV, 18-Oct-2020) (Revised by AV, 5-Dec-2020)

Ref Expression
Hypotheses upgredg.v 𝑉 = ( Vtx ‘ 𝐺 )
upgredg.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion upgredg2vtx ( ( 𝐺 ∈ UPGraph ∧ 𝐶𝐸𝐴𝐶 ) → ∃ 𝑏𝑉 𝐶 = { 𝐴 , 𝑏 } )

Proof

Step Hyp Ref Expression
1 upgredg.v 𝑉 = ( Vtx ‘ 𝐺 )
2 upgredg.e 𝐸 = ( Edg ‘ 𝐺 )
3 1 2 upgredg ( ( 𝐺 ∈ UPGraph ∧ 𝐶𝐸 ) → ∃ 𝑎𝑉𝑐𝑉 𝐶 = { 𝑎 , 𝑐 } )
4 3 3adant3 ( ( 𝐺 ∈ UPGraph ∧ 𝐶𝐸𝐴𝐶 ) → ∃ 𝑎𝑉𝑐𝑉 𝐶 = { 𝑎 , 𝑐 } )
5 elpr2elpr ( ( 𝑎𝑉𝑐𝑉𝐴 ∈ { 𝑎 , 𝑐 } ) → ∃ 𝑏𝑉 { 𝑎 , 𝑐 } = { 𝐴 , 𝑏 } )
6 5 3expia ( ( 𝑎𝑉𝑐𝑉 ) → ( 𝐴 ∈ { 𝑎 , 𝑐 } → ∃ 𝑏𝑉 { 𝑎 , 𝑐 } = { 𝐴 , 𝑏 } ) )
7 eleq2 ( 𝐶 = { 𝑎 , 𝑐 } → ( 𝐴𝐶𝐴 ∈ { 𝑎 , 𝑐 } ) )
8 eqeq1 ( 𝐶 = { 𝑎 , 𝑐 } → ( 𝐶 = { 𝐴 , 𝑏 } ↔ { 𝑎 , 𝑐 } = { 𝐴 , 𝑏 } ) )
9 8 rexbidv ( 𝐶 = { 𝑎 , 𝑐 } → ( ∃ 𝑏𝑉 𝐶 = { 𝐴 , 𝑏 } ↔ ∃ 𝑏𝑉 { 𝑎 , 𝑐 } = { 𝐴 , 𝑏 } ) )
10 7 9 imbi12d ( 𝐶 = { 𝑎 , 𝑐 } → ( ( 𝐴𝐶 → ∃ 𝑏𝑉 𝐶 = { 𝐴 , 𝑏 } ) ↔ ( 𝐴 ∈ { 𝑎 , 𝑐 } → ∃ 𝑏𝑉 { 𝑎 , 𝑐 } = { 𝐴 , 𝑏 } ) ) )
11 6 10 syl5ibr ( 𝐶 = { 𝑎 , 𝑐 } → ( ( 𝑎𝑉𝑐𝑉 ) → ( 𝐴𝐶 → ∃ 𝑏𝑉 𝐶 = { 𝐴 , 𝑏 } ) ) )
12 11 com13 ( 𝐴𝐶 → ( ( 𝑎𝑉𝑐𝑉 ) → ( 𝐶 = { 𝑎 , 𝑐 } → ∃ 𝑏𝑉 𝐶 = { 𝐴 , 𝑏 } ) ) )
13 12 3ad2ant3 ( ( 𝐺 ∈ UPGraph ∧ 𝐶𝐸𝐴𝐶 ) → ( ( 𝑎𝑉𝑐𝑉 ) → ( 𝐶 = { 𝑎 , 𝑐 } → ∃ 𝑏𝑉 𝐶 = { 𝐴 , 𝑏 } ) ) )
14 13 rexlimdvv ( ( 𝐺 ∈ UPGraph ∧ 𝐶𝐸𝐴𝐶 ) → ( ∃ 𝑎𝑉𝑐𝑉 𝐶 = { 𝑎 , 𝑐 } → ∃ 𝑏𝑉 𝐶 = { 𝐴 , 𝑏 } ) )
15 4 14 mpd ( ( 𝐺 ∈ UPGraph ∧ 𝐶𝐸𝐴𝐶 ) → ∃ 𝑏𝑉 𝐶 = { 𝐴 , 𝑏 } )