Step |
Hyp |
Ref |
Expression |
1 |
|
edginwlk.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
2 |
|
edginwlk.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
upgruhgr |
⊢ ( 𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph ) |
4 |
1
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun 𝐼 ) |
5 |
3 4
|
syl |
⊢ ( 𝐺 ∈ UPGraph → Fun 𝐼 ) |
6 |
1 2
|
edginwlk |
⊢ ( ( Fun 𝐼 ∧ 𝐹 ∈ Word dom 𝐼 ∧ 𝐾 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) ) ∈ 𝐸 ) |
7 |
6
|
3expia |
⊢ ( ( Fun 𝐼 ∧ 𝐹 ∈ Word dom 𝐼 ) → ( 𝐾 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) ) ∈ 𝐸 ) ) |
8 |
5 7
|
sylan |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ∈ Word dom 𝐼 ) → ( 𝐾 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) ) ∈ 𝐸 ) ) |