| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upgredg.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | upgredg.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 | 1 2 | upgredg | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐶  ∈  𝐸 )  →  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 𝐶  =  { 𝑎 ,  𝑏 } ) | 
						
							| 4 | 3 | 3adant3 | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐶  ∈  𝐸  ∧  { 𝐴 ,  𝐵 }  ⊆  𝐶 )  →  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 𝐶  =  { 𝑎 ,  𝑏 } ) | 
						
							| 5 |  | ssprsseq | ⊢ ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  ( { 𝐴 ,  𝐵 }  ⊆  { 𝑎 ,  𝑏 }  ↔  { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 6 | 5 | biimpd | ⊢ ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  ( { 𝐴 ,  𝐵 }  ⊆  { 𝑎 ,  𝑏 }  →  { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 7 |  | sseq2 | ⊢ ( 𝐶  =  { 𝑎 ,  𝑏 }  →  ( { 𝐴 ,  𝐵 }  ⊆  𝐶  ↔  { 𝐴 ,  𝐵 }  ⊆  { 𝑎 ,  𝑏 } ) ) | 
						
							| 8 |  | eqeq2 | ⊢ ( 𝐶  =  { 𝑎 ,  𝑏 }  →  ( { 𝐴 ,  𝐵 }  =  𝐶  ↔  { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 9 | 7 8 | imbi12d | ⊢ ( 𝐶  =  { 𝑎 ,  𝑏 }  →  ( ( { 𝐴 ,  𝐵 }  ⊆  𝐶  →  { 𝐴 ,  𝐵 }  =  𝐶 )  ↔  ( { 𝐴 ,  𝐵 }  ⊆  { 𝑎 ,  𝑏 }  →  { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) ) | 
						
							| 10 | 6 9 | imbitrrid | ⊢ ( 𝐶  =  { 𝑎 ,  𝑏 }  →  ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  ( { 𝐴 ,  𝐵 }  ⊆  𝐶  →  { 𝐴 ,  𝐵 }  =  𝐶 ) ) ) | 
						
							| 11 | 10 | com23 | ⊢ ( 𝐶  =  { 𝑎 ,  𝑏 }  →  ( { 𝐴 ,  𝐵 }  ⊆  𝐶  →  ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  { 𝐴 ,  𝐵 }  =  𝐶 ) ) ) | 
						
							| 12 | 11 | a1i | ⊢ ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  →  ( 𝐶  =  { 𝑎 ,  𝑏 }  →  ( { 𝐴 ,  𝐵 }  ⊆  𝐶  →  ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  { 𝐴 ,  𝐵 }  =  𝐶 ) ) ) ) | 
						
							| 13 | 12 | rexlimivv | ⊢ ( ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 𝐶  =  { 𝑎 ,  𝑏 }  →  ( { 𝐴 ,  𝐵 }  ⊆  𝐶  →  ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  { 𝐴 ,  𝐵 }  =  𝐶 ) ) ) | 
						
							| 14 | 13 | com12 | ⊢ ( { 𝐴 ,  𝐵 }  ⊆  𝐶  →  ( ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 𝐶  =  { 𝑎 ,  𝑏 }  →  ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  { 𝐴 ,  𝐵 }  =  𝐶 ) ) ) | 
						
							| 15 | 14 | 3ad2ant3 | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐶  ∈  𝐸  ∧  { 𝐴 ,  𝐵 }  ⊆  𝐶 )  →  ( ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 𝐶  =  { 𝑎 ,  𝑏 }  →  ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  { 𝐴 ,  𝐵 }  =  𝐶 ) ) ) | 
						
							| 16 | 4 15 | mpd | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐶  ∈  𝐸  ∧  { 𝐴 ,  𝐵 }  ⊆  𝐶 )  →  ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  { 𝐴 ,  𝐵 }  =  𝐶 ) ) | 
						
							| 17 | 16 | imp | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝐶  ∈  𝐸  ∧  { 𝐴 ,  𝐵 }  ⊆  𝐶 )  ∧  ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 ) )  →  { 𝐴 ,  𝐵 }  =  𝐶 ) |