Metamath Proof Explorer


Theorem upgreupthi

Description: Properties of an Eulerian path in a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 18-Feb-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Hypotheses eupths.i 𝐼 = ( iEdg ‘ 𝐺 )
upgriseupth.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion upgreupthi ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) → ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom 𝐼𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) )

Proof

Step Hyp Ref Expression
1 eupths.i 𝐼 = ( iEdg ‘ 𝐺 )
2 upgriseupth.v 𝑉 = ( Vtx ‘ 𝐺 )
3 1 2 upgriseupth ( 𝐺 ∈ UPGraph → ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom 𝐼𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) )
4 3 biimpa ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) → ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom 𝐼𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) )