Database  
				GRAPH THEORY  
				Eulerian paths and the Konigsberg Bridge problem  
				Eulerian paths  
				upgreupthi  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   Properties of an Eulerian path in a pseudograph.  (Contributed by Mario
       Carneiro , 12-Mar-2015)   (Revised by AV , 18-Feb-2021)   (Proof shortened by AV , 30-Oct-2021) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
					
						 
						Hypotheses 
						eupths.i  
						⊢  𝐼   =  ( iEdg ‘ 𝐺  )  
					 
					
						 
						 
						upgriseupth.v  
						⊢  𝑉   =  ( Vtx ‘ 𝐺  )  
					 
				
					 
					Assertion 
					upgreupthi  
					⊢   ( ( 𝐺   ∈  UPGraph  ∧  𝐹  ( EulerPaths ‘ 𝐺  ) 𝑃  )  →  ( 𝐹  : ( 0 ..^ ( ♯ ‘ 𝐹  ) ) –1-1 -onto → dom  𝐼   ∧  𝑃  : ( 0 ... ( ♯ ‘ 𝐹  ) ) ⟶ 𝑉   ∧  ∀ 𝑘   ∈  ( 0 ..^ ( ♯ ‘ 𝐹  ) ) ( 𝐼  ‘ ( 𝐹  ‘ 𝑘  ) )  =  { ( 𝑃  ‘ 𝑘  ) ,  ( 𝑃  ‘ ( 𝑘   +  1 ) ) } ) )  
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							eupths.i  
							⊢  𝐼   =  ( iEdg ‘ 𝐺  )  
						 
						
							2  
							
								
							 
							upgriseupth.v  
							⊢  𝑉   =  ( Vtx ‘ 𝐺  )  
						 
						
							3  
							
								1  2 
							 
							upgriseupth  
							⊢  ( 𝐺   ∈  UPGraph  →  ( 𝐹  ( EulerPaths ‘ 𝐺  ) 𝑃   ↔  ( 𝐹  : ( 0 ..^ ( ♯ ‘ 𝐹  ) ) –1-1 -onto → dom  𝐼   ∧  𝑃  : ( 0 ... ( ♯ ‘ 𝐹  ) ) ⟶ 𝑉   ∧  ∀ 𝑘   ∈  ( 0 ..^ ( ♯ ‘ 𝐹  ) ) ( 𝐼  ‘ ( 𝐹  ‘ 𝑘  ) )  =  { ( 𝑃  ‘ 𝑘  ) ,  ( 𝑃  ‘ ( 𝑘   +  1 ) ) } ) ) )  
						 
						
							4  
							
								3 
							 
							biimpa  
							⊢  ( ( 𝐺   ∈  UPGraph  ∧  𝐹  ( EulerPaths ‘ 𝐺  ) 𝑃  )  →  ( 𝐹  : ( 0 ..^ ( ♯ ‘ 𝐹  ) ) –1-1 -onto → dom  𝐼   ∧  𝑃  : ( 0 ... ( ♯ ‘ 𝐹  ) ) ⟶ 𝑉   ∧  ∀ 𝑘   ∈  ( 0 ..^ ( ♯ ‘ 𝐹  ) ) ( 𝐼  ‘ ( 𝐹  ‘ 𝑘  ) )  =  { ( 𝑃  ‘ 𝑘  ) ,  ( 𝑃  ‘ ( 𝑘   +  1 ) ) } ) )