| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							upgreupthseg.i | 
							⊢ 𝐼  =  ( iEdg ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							eqid | 
							⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							upgreupthi | 
							⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 )  →  ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑛 ) )  =  { ( 𝑃 ‘ 𝑛 ) ,  ( 𝑃 ‘ ( 𝑛  +  1 ) ) } ) )  | 
						
						
							| 4 | 
							
								
							 | 
							2fveq3 | 
							⊢ ( 𝑛  =  𝑁  →  ( 𝐼 ‘ ( 𝐹 ‘ 𝑛 ) )  =  ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑛  =  𝑁  →  ( 𝑃 ‘ 𝑛 )  =  ( 𝑃 ‘ 𝑁 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							fvoveq1 | 
							⊢ ( 𝑛  =  𝑁  →  ( 𝑃 ‘ ( 𝑛  +  1 ) )  =  ( 𝑃 ‘ ( 𝑁  +  1 ) ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							preq12d | 
							⊢ ( 𝑛  =  𝑁  →  { ( 𝑃 ‘ 𝑛 ) ,  ( 𝑃 ‘ ( 𝑛  +  1 ) ) }  =  { ( 𝑃 ‘ 𝑁 ) ,  ( 𝑃 ‘ ( 𝑁  +  1 ) ) } )  | 
						
						
							| 8 | 
							
								4 7
							 | 
							eqeq12d | 
							⊢ ( 𝑛  =  𝑁  →  ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑛 ) )  =  { ( 𝑃 ‘ 𝑛 ) ,  ( 𝑃 ‘ ( 𝑛  +  1 ) ) }  ↔  ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) )  =  { ( 𝑃 ‘ 𝑁 ) ,  ( 𝑃 ‘ ( 𝑁  +  1 ) ) } ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							rspccv | 
							⊢ ( ∀ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑛 ) )  =  { ( 𝑃 ‘ 𝑛 ) ,  ( 𝑃 ‘ ( 𝑛  +  1 ) ) }  →  ( 𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) )  =  { ( 𝑃 ‘ 𝑁 ) ,  ( 𝑃 ‘ ( 𝑁  +  1 ) ) } ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑛 ) )  =  { ( 𝑃 ‘ 𝑛 ) ,  ( 𝑃 ‘ ( 𝑛  +  1 ) ) } )  →  ( 𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) )  =  { ( 𝑃 ‘ 𝑁 ) ,  ( 𝑃 ‘ ( 𝑁  +  1 ) ) } ) )  | 
						
						
							| 11 | 
							
								3 10
							 | 
							syl | 
							⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 )  →  ( 𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) )  =  { ( 𝑃 ‘ 𝑁 ) ,  ( 𝑃 ‘ ( 𝑁  +  1 ) ) } ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							3impia | 
							⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) )  =  { ( 𝑃 ‘ 𝑁 ) ,  ( 𝑃 ‘ ( 𝑁  +  1 ) ) } )  |