Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
2 |
1
|
ewlkprop |
⊢ ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) → ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
3 |
|
fvex |
⊢ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∈ V |
4 |
|
hashin |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∈ V → ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ≤ ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ) |
5 |
3 4
|
ax-mp |
⊢ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ≤ ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) |
6 |
|
simpl3 |
⊢ ( ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) ∧ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝐺 ∈ UPGraph ) |
7 |
|
upgruhgr |
⊢ ( 𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph ) |
8 |
1
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
9 |
7 8
|
syl |
⊢ ( 𝐺 ∈ UPGraph → Fun ( iEdg ‘ 𝐺 ) ) |
10 |
9
|
funfnd |
⊢ ( 𝐺 ∈ UPGraph → ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ) |
11 |
10
|
3ad2ant3 |
⊢ ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) → ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ) |
12 |
11
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) ∧ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ) |
13 |
|
elfzofz |
⊢ ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) |
14 |
|
fz1fzo0m1 |
⊢ ( 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) → ( 𝑘 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
15 |
13 14
|
syl |
⊢ ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝑘 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
16 |
|
wrdsymbcl |
⊢ ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 𝑘 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ ( 𝑘 − 1 ) ) ∈ dom ( iEdg ‘ 𝐺 ) ) |
17 |
15 16
|
sylan2 |
⊢ ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ ( 𝑘 − 1 ) ) ∈ dom ( iEdg ‘ 𝐺 ) ) |
18 |
17
|
3ad2antl2 |
⊢ ( ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) ∧ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ ( 𝑘 − 1 ) ) ∈ dom ( iEdg ‘ 𝐺 ) ) |
19 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
20 |
19 1
|
upgrle |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ∧ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ≤ 2 ) |
21 |
6 12 18 20
|
syl3anc |
⊢ ( ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) ∧ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ≤ 2 ) |
22 |
3
|
inex1 |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∈ V |
23 |
|
hashxrcl |
⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∈ V → ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ∈ ℝ* ) |
24 |
22 23
|
ax-mp |
⊢ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ∈ ℝ* |
25 |
|
hashxrcl |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∈ V → ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ∈ ℝ* ) |
26 |
3 25
|
ax-mp |
⊢ ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ∈ ℝ* |
27 |
|
2re |
⊢ 2 ∈ ℝ |
28 |
27
|
rexri |
⊢ 2 ∈ ℝ* |
29 |
24 26 28
|
3pm3.2i |
⊢ ( ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ∈ ℝ* ∧ ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ∈ ℝ* ∧ 2 ∈ ℝ* ) |
30 |
29
|
a1i |
⊢ ( ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) ∧ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ∈ ℝ* ∧ ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ∈ ℝ* ∧ 2 ∈ ℝ* ) ) |
31 |
|
xrletr |
⊢ ( ( ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ∈ ℝ* ∧ ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ∈ ℝ* ∧ 2 ∈ ℝ* ) → ( ( ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ≤ ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ∧ ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ≤ 2 ) → ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ≤ 2 ) ) |
32 |
30 31
|
syl |
⊢ ( ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) ∧ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ≤ ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ∧ ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ≤ 2 ) → ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ≤ 2 ) ) |
33 |
21 32
|
mpan2d |
⊢ ( ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) ∧ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ≤ ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ≤ 2 ) ) |
34 |
5 33
|
mpi |
⊢ ( ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) ∧ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ≤ 2 ) |
35 |
|
xnn0xr |
⊢ ( 𝑆 ∈ ℕ0* → 𝑆 ∈ ℝ* ) |
36 |
24
|
a1i |
⊢ ( 𝑆 ∈ ℕ0* → ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ∈ ℝ* ) |
37 |
28
|
a1i |
⊢ ( 𝑆 ∈ ℕ0* → 2 ∈ ℝ* ) |
38 |
|
xrletr |
⊢ ( ( 𝑆 ∈ ℝ* ∧ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ∈ ℝ* ∧ 2 ∈ ℝ* ) → ( ( 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ∧ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ≤ 2 ) → 𝑆 ≤ 2 ) ) |
39 |
35 36 37 38
|
syl3anc |
⊢ ( 𝑆 ∈ ℕ0* → ( ( 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ∧ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ≤ 2 ) → 𝑆 ≤ 2 ) ) |
40 |
39
|
expcomd |
⊢ ( 𝑆 ∈ ℕ0* → ( ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ≤ 2 → ( 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → 𝑆 ≤ 2 ) ) ) |
41 |
40
|
adantl |
⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) → ( ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ≤ 2 → ( 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → 𝑆 ≤ 2 ) ) ) |
42 |
41
|
3ad2ant1 |
⊢ ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) → ( ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ≤ 2 → ( 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → 𝑆 ≤ 2 ) ) ) |
43 |
42
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) ∧ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ≤ 2 → ( 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → 𝑆 ≤ 2 ) ) ) |
44 |
34 43
|
mpd |
⊢ ( ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) ∧ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → 𝑆 ≤ 2 ) ) |
45 |
44
|
ralimdva |
⊢ ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) → ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ 2 ) ) |
46 |
45
|
3exp |
⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) → ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) → ( 𝐺 ∈ UPGraph → ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ 2 ) ) ) ) |
47 |
46
|
com34 |
⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) → ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) → ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( 𝐺 ∈ UPGraph → ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ 2 ) ) ) ) |
48 |
47
|
3imp |
⊢ ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) → ( 𝐺 ∈ UPGraph → ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ 2 ) ) |
49 |
|
lencl |
⊢ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
50 |
|
1zzd |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → 1 ∈ ℤ ) |
51 |
|
nn0z |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℤ ) |
52 |
|
fzon |
⊢ ( ( 1 ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℤ ) → ( ( ♯ ‘ 𝐹 ) ≤ 1 ↔ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = ∅ ) ) |
53 |
50 51 52
|
syl2anc |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( ♯ ‘ 𝐹 ) ≤ 1 ↔ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = ∅ ) ) |
54 |
|
nn0re |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℝ ) |
55 |
|
1red |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → 1 ∈ ℝ ) |
56 |
54 55
|
lenltd |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( ♯ ‘ 𝐹 ) ≤ 1 ↔ ¬ 1 < ( ♯ ‘ 𝐹 ) ) ) |
57 |
53 56
|
bitr3d |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = ∅ ↔ ¬ 1 < ( ♯ ‘ 𝐹 ) ) ) |
58 |
57
|
biimpd |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = ∅ → ¬ 1 < ( ♯ ‘ 𝐹 ) ) ) |
59 |
58
|
necon2ad |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 1 < ( ♯ ‘ 𝐹 ) → ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ≠ ∅ ) ) |
60 |
|
rspn0 |
⊢ ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ≠ ∅ → ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ 2 → 𝑆 ≤ 2 ) ) |
61 |
59 60
|
syl6com |
⊢ ( 1 < ( ♯ ‘ 𝐹 ) → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ 2 → 𝑆 ≤ 2 ) ) ) |
62 |
61
|
com3l |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ 2 → ( 1 < ( ♯ ‘ 𝐹 ) → 𝑆 ≤ 2 ) ) ) |
63 |
49 62
|
syl |
⊢ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) → ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ 2 → ( 1 < ( ♯ ‘ 𝐹 ) → 𝑆 ≤ 2 ) ) ) |
64 |
63
|
3ad2ant2 |
⊢ ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) → ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ 2 → ( 1 < ( ♯ ‘ 𝐹 ) → 𝑆 ≤ 2 ) ) ) |
65 |
48 64
|
syld |
⊢ ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) → ( 𝐺 ∈ UPGraph → ( 1 < ( ♯ ‘ 𝐹 ) → 𝑆 ≤ 2 ) ) ) |
66 |
2 65
|
syl |
⊢ ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) → ( 𝐺 ∈ UPGraph → ( 1 < ( ♯ ‘ 𝐹 ) → 𝑆 ≤ 2 ) ) ) |
67 |
66
|
3imp21 |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) ∧ 1 < ( ♯ ‘ 𝐹 ) ) → 𝑆 ≤ 2 ) |