Step |
Hyp |
Ref |
Expression |
1 |
|
upgrtrls.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
upgrtrls.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
1 2
|
upgristrl |
⊢ ( 𝐺 ∈ UPGraph → ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ↔ ( ( 𝐹 ∈ Word dom 𝐼 ∧ Fun ◡ 𝐹 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) ) |
4 |
|
iswrdb |
⊢ ( 𝐹 ∈ Word dom 𝐼 ↔ 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) |
5 |
4
|
a1i |
⊢ ( 𝐺 ∈ UPGraph → ( 𝐹 ∈ Word dom 𝐼 ↔ 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) ) |
6 |
5
|
anbi1d |
⊢ ( 𝐺 ∈ UPGraph → ( ( 𝐹 ∈ Word dom 𝐼 ∧ Fun ◡ 𝐹 ) ↔ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ∧ Fun ◡ 𝐹 ) ) ) |
7 |
|
df-f1 |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ↔ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ∧ Fun ◡ 𝐹 ) ) |
8 |
6 7
|
bitr4di |
⊢ ( 𝐺 ∈ UPGraph → ( ( 𝐹 ∈ Word dom 𝐼 ∧ Fun ◡ 𝐹 ) ↔ 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) ) |
9 |
8
|
3anbi1d |
⊢ ( 𝐺 ∈ UPGraph → ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ Fun ◡ 𝐹 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ↔ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) ) |
10 |
3 9
|
bitrd |
⊢ ( 𝐺 ∈ UPGraph → ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) ) |