| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isupgr.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | isupgr.e | ⊢ 𝐸  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 | 1 2 | upgrf | ⊢ ( 𝐺  ∈  UPGraph  →  𝐸 : dom  𝐸 ⟶ { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } ) | 
						
							| 4 |  | fndm | ⊢ ( 𝐸  Fn  𝐴  →  dom  𝐸  =  𝐴 ) | 
						
							| 5 | 4 | feq2d | ⊢ ( 𝐸  Fn  𝐴  →  ( 𝐸 : dom  𝐸 ⟶ { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 }  ↔  𝐸 : 𝐴 ⟶ { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } ) ) | 
						
							| 6 | 3 5 | syl5ibcom | ⊢ ( 𝐺  ∈  UPGraph  →  ( 𝐸  Fn  𝐴  →  𝐸 : 𝐴 ⟶ { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } ) ) | 
						
							| 7 | 6 | imp | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐸  Fn  𝐴 )  →  𝐸 : 𝐴 ⟶ { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } ) |