| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upgrres.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
upgrres.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
| 3 |
|
upgrres.f |
⊢ 𝐹 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } |
| 4 |
|
upgrres.s |
⊢ 𝑆 = 〈 ( 𝑉 ∖ { 𝑁 } ) , ( 𝐸 ↾ 𝐹 ) 〉 |
| 5 |
|
upgruhgr |
⊢ ( 𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph ) |
| 6 |
2
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun 𝐸 ) |
| 7 |
|
funres |
⊢ ( Fun 𝐸 → Fun ( 𝐸 ↾ 𝐹 ) ) |
| 8 |
5 6 7
|
3syl |
⊢ ( 𝐺 ∈ UPGraph → Fun ( 𝐸 ↾ 𝐹 ) ) |
| 9 |
8
|
funfnd |
⊢ ( 𝐺 ∈ UPGraph → ( 𝐸 ↾ 𝐹 ) Fn dom ( 𝐸 ↾ 𝐹 ) ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐸 ↾ 𝐹 ) Fn dom ( 𝐸 ↾ 𝐹 ) ) |
| 11 |
1 2 3
|
upgrreslem |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ran ( 𝐸 ↾ 𝐹 ) ⊆ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) |
| 12 |
|
df-f |
⊢ ( ( 𝐸 ↾ 𝐹 ) : dom ( 𝐸 ↾ 𝐹 ) ⟶ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ↔ ( ( 𝐸 ↾ 𝐹 ) Fn dom ( 𝐸 ↾ 𝐹 ) ∧ ran ( 𝐸 ↾ 𝐹 ) ⊆ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
| 13 |
10 11 12
|
sylanbrc |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐸 ↾ 𝐹 ) : dom ( 𝐸 ↾ 𝐹 ) ⟶ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) |
| 14 |
|
opex |
⊢ 〈 ( 𝑉 ∖ { 𝑁 } ) , ( 𝐸 ↾ 𝐹 ) 〉 ∈ V |
| 15 |
4 14
|
eqeltri |
⊢ 𝑆 ∈ V |
| 16 |
1 2 3 4
|
uhgrspan1lem2 |
⊢ ( Vtx ‘ 𝑆 ) = ( 𝑉 ∖ { 𝑁 } ) |
| 17 |
16
|
eqcomi |
⊢ ( 𝑉 ∖ { 𝑁 } ) = ( Vtx ‘ 𝑆 ) |
| 18 |
1 2 3 4
|
uhgrspan1lem3 |
⊢ ( iEdg ‘ 𝑆 ) = ( 𝐸 ↾ 𝐹 ) |
| 19 |
18
|
eqcomi |
⊢ ( 𝐸 ↾ 𝐹 ) = ( iEdg ‘ 𝑆 ) |
| 20 |
17 19
|
isupgr |
⊢ ( 𝑆 ∈ V → ( 𝑆 ∈ UPGraph ↔ ( 𝐸 ↾ 𝐹 ) : dom ( 𝐸 ↾ 𝐹 ) ⟶ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
| 21 |
15 20
|
mp1i |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑆 ∈ UPGraph ↔ ( 𝐸 ↾ 𝐹 ) : dom ( 𝐸 ↾ 𝐹 ) ⟶ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
| 22 |
13 21
|
mpbird |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → 𝑆 ∈ UPGraph ) |