Step |
Hyp |
Ref |
Expression |
1 |
|
upgrres1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
upgrres1.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
upgrres1.f |
⊢ 𝐹 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } |
4 |
|
upgrres1.s |
⊢ 𝑆 = 〈 ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) 〉 |
5 |
|
f1oi |
⊢ ( I ↾ 𝐹 ) : 𝐹 –1-1-onto→ 𝐹 |
6 |
|
f1of |
⊢ ( ( I ↾ 𝐹 ) : 𝐹 –1-1-onto→ 𝐹 → ( I ↾ 𝐹 ) : 𝐹 ⟶ 𝐹 ) |
7 |
5 6
|
mp1i |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( I ↾ 𝐹 ) : 𝐹 ⟶ 𝐹 ) |
8 |
7
|
ffdmd |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) ⟶ 𝐹 ) |
9 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ∈ 𝐸 ) |
10 |
9
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑁 ∉ 𝑒 ) → 𝑒 ∈ 𝐸 ) |
11 |
2
|
eleq2i |
⊢ ( 𝑒 ∈ 𝐸 ↔ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) |
12 |
|
edgupgr |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ 𝑒 ≠ ∅ ∧ ( ♯ ‘ 𝑒 ) ≤ 2 ) ) |
13 |
|
elpwi |
⊢ ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) → 𝑒 ⊆ ( Vtx ‘ 𝐺 ) ) |
14 |
13 1
|
sseqtrrdi |
⊢ ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) → 𝑒 ⊆ 𝑉 ) |
15 |
14
|
3ad2ant1 |
⊢ ( ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ 𝑒 ≠ ∅ ∧ ( ♯ ‘ 𝑒 ) ≤ 2 ) → 𝑒 ⊆ 𝑉 ) |
16 |
12 15
|
syl |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → 𝑒 ⊆ 𝑉 ) |
17 |
11 16
|
sylan2b |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ⊆ 𝑉 ) |
18 |
17
|
ad4ant13 |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑁 ∉ 𝑒 ) → 𝑒 ⊆ 𝑉 ) |
19 |
|
simpr |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑁 ∉ 𝑒 ) → 𝑁 ∉ 𝑒 ) |
20 |
|
elpwdifsn |
⊢ ( ( 𝑒 ∈ 𝐸 ∧ 𝑒 ⊆ 𝑉 ∧ 𝑁 ∉ 𝑒 ) → 𝑒 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) |
21 |
10 18 19 20
|
syl3anc |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑁 ∉ 𝑒 ) → 𝑒 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) |
22 |
|
simpl |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐺 ∈ UPGraph ) |
23 |
11
|
biimpi |
⊢ ( 𝑒 ∈ 𝐸 → 𝑒 ∈ ( Edg ‘ 𝐺 ) ) |
24 |
12
|
simp2d |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → 𝑒 ≠ ∅ ) |
25 |
22 23 24
|
syl2an |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ≠ ∅ ) |
26 |
25
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑁 ∉ 𝑒 ) → 𝑒 ≠ ∅ ) |
27 |
|
nelsn |
⊢ ( 𝑒 ≠ ∅ → ¬ 𝑒 ∈ { ∅ } ) |
28 |
26 27
|
syl |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑁 ∉ 𝑒 ) → ¬ 𝑒 ∈ { ∅ } ) |
29 |
21 28
|
eldifd |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑁 ∉ 𝑒 ) → 𝑒 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ) |
30 |
29
|
ex |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) → ( 𝑁 ∉ 𝑒 → 𝑒 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ) ) |
31 |
30
|
ralrimiva |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ∀ 𝑒 ∈ 𝐸 ( 𝑁 ∉ 𝑒 → 𝑒 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ) ) |
32 |
|
rabss |
⊢ ( { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } ⊆ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ↔ ∀ 𝑒 ∈ 𝐸 ( 𝑁 ∉ 𝑒 → 𝑒 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ) ) |
33 |
31 32
|
sylibr |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } ⊆ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ) |
34 |
3 33
|
eqsstrid |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 ⊆ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ) |
35 |
|
elrabi |
⊢ ( 𝑝 ∈ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } → 𝑝 ∈ 𝐸 ) |
36 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
37 |
2 36
|
eqtri |
⊢ 𝐸 = ran ( iEdg ‘ 𝐺 ) |
38 |
37
|
eleq2i |
⊢ ( 𝑝 ∈ 𝐸 ↔ 𝑝 ∈ ran ( iEdg ‘ 𝐺 ) ) |
39 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
40 |
1 39
|
upgrf |
⊢ ( 𝐺 ∈ UPGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
41 |
40
|
frnd |
⊢ ( 𝐺 ∈ UPGraph → ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
42 |
41
|
sseld |
⊢ ( 𝐺 ∈ UPGraph → ( 𝑝 ∈ ran ( iEdg ‘ 𝐺 ) → 𝑝 ∈ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
43 |
38 42
|
syl5bi |
⊢ ( 𝐺 ∈ UPGraph → ( 𝑝 ∈ 𝐸 → 𝑝 ∈ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
44 |
|
fveq2 |
⊢ ( 𝑥 = 𝑝 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑝 ) ) |
45 |
44
|
breq1d |
⊢ ( 𝑥 = 𝑝 → ( ( ♯ ‘ 𝑥 ) ≤ 2 ↔ ( ♯ ‘ 𝑝 ) ≤ 2 ) ) |
46 |
45
|
elrab |
⊢ ( 𝑝 ∈ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ↔ ( 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ( ♯ ‘ 𝑝 ) ≤ 2 ) ) |
47 |
46
|
simprbi |
⊢ ( 𝑝 ∈ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ( ♯ ‘ 𝑝 ) ≤ 2 ) |
48 |
43 47
|
syl6 |
⊢ ( 𝐺 ∈ UPGraph → ( 𝑝 ∈ 𝐸 → ( ♯ ‘ 𝑝 ) ≤ 2 ) ) |
49 |
48
|
adantr |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑝 ∈ 𝐸 → ( ♯ ‘ 𝑝 ) ≤ 2 ) ) |
50 |
35 49
|
syl5com |
⊢ ( 𝑝 ∈ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } → ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( ♯ ‘ 𝑝 ) ≤ 2 ) ) |
51 |
50 3
|
eleq2s |
⊢ ( 𝑝 ∈ 𝐹 → ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( ♯ ‘ 𝑝 ) ≤ 2 ) ) |
52 |
51
|
impcom |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑝 ∈ 𝐹 ) → ( ♯ ‘ 𝑝 ) ≤ 2 ) |
53 |
34 52
|
ssrabdv |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 ⊆ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) |
54 |
8 53
|
fssd |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) ⟶ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) |
55 |
|
opex |
⊢ 〈 ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) 〉 ∈ V |
56 |
4 55
|
eqeltri |
⊢ 𝑆 ∈ V |
57 |
1 2 3 4
|
upgrres1lem2 |
⊢ ( Vtx ‘ 𝑆 ) = ( 𝑉 ∖ { 𝑁 } ) |
58 |
57
|
eqcomi |
⊢ ( 𝑉 ∖ { 𝑁 } ) = ( Vtx ‘ 𝑆 ) |
59 |
1 2 3 4
|
upgrres1lem3 |
⊢ ( iEdg ‘ 𝑆 ) = ( I ↾ 𝐹 ) |
60 |
59
|
eqcomi |
⊢ ( I ↾ 𝐹 ) = ( iEdg ‘ 𝑆 ) |
61 |
58 60
|
isupgr |
⊢ ( 𝑆 ∈ V → ( 𝑆 ∈ UPGraph ↔ ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) ⟶ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
62 |
56 61
|
mp1i |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑆 ∈ UPGraph ↔ ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) ⟶ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
63 |
54 62
|
mpbird |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → 𝑆 ∈ UPGraph ) |