Metamath Proof Explorer
		
		
		
		Description:  Lemma 1 for upgrres1 .  (Contributed by AV, 7-Nov-2020)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | upgrres1.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
					
						|  |  | upgrres1.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
					
						|  |  | upgrres1.f | ⊢ 𝐹  =  { 𝑒  ∈  𝐸  ∣  𝑁  ∉  𝑒 } | 
				
					|  | Assertion | upgrres1lem1 | ⊢  ( ( 𝑉  ∖  { 𝑁 } )  ∈  V  ∧  (  I   ↾  𝐹 )  ∈  V ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upgrres1.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | upgrres1.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | upgrres1.f | ⊢ 𝐹  =  { 𝑒  ∈  𝐸  ∣  𝑁  ∉  𝑒 } | 
						
							| 4 | 1 | fvexi | ⊢ 𝑉  ∈  V | 
						
							| 5 | 4 | difexi | ⊢ ( 𝑉  ∖  { 𝑁 } )  ∈  V | 
						
							| 6 | 2 | fvexi | ⊢ 𝐸  ∈  V | 
						
							| 7 | 3 6 | rabex2 | ⊢ 𝐹  ∈  V | 
						
							| 8 |  | resiexg | ⊢ ( 𝐹  ∈  V  →  (  I   ↾  𝐹 )  ∈  V ) | 
						
							| 9 | 7 8 | ax-mp | ⊢ (  I   ↾  𝐹 )  ∈  V | 
						
							| 10 | 5 9 | pm3.2i | ⊢ ( ( 𝑉  ∖  { 𝑁 } )  ∈  V  ∧  (  I   ↾  𝐹 )  ∈  V ) |