| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upgrres1.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | upgrres1.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | upgrres1.f | ⊢ 𝐹  =  { 𝑒  ∈  𝐸  ∣  𝑁  ∉  𝑒 } | 
						
							| 4 |  | upgrres1.s | ⊢ 𝑆  =  〈 ( 𝑉  ∖  { 𝑁 } ) ,  (  I   ↾  𝐹 ) 〉 | 
						
							| 5 | 4 | fveq2i | ⊢ ( iEdg ‘ 𝑆 )  =  ( iEdg ‘ 〈 ( 𝑉  ∖  { 𝑁 } ) ,  (  I   ↾  𝐹 ) 〉 ) | 
						
							| 6 | 1 2 3 | upgrres1lem1 | ⊢ ( ( 𝑉  ∖  { 𝑁 } )  ∈  V  ∧  (  I   ↾  𝐹 )  ∈  V ) | 
						
							| 7 |  | opiedgfv | ⊢ ( ( ( 𝑉  ∖  { 𝑁 } )  ∈  V  ∧  (  I   ↾  𝐹 )  ∈  V )  →  ( iEdg ‘ 〈 ( 𝑉  ∖  { 𝑁 } ) ,  (  I   ↾  𝐹 ) 〉 )  =  (  I   ↾  𝐹 ) ) | 
						
							| 8 | 6 7 | ax-mp | ⊢ ( iEdg ‘ 〈 ( 𝑉  ∖  { 𝑁 } ) ,  (  I   ↾  𝐹 ) 〉 )  =  (  I   ↾  𝐹 ) | 
						
							| 9 | 5 8 | eqtri | ⊢ ( iEdg ‘ 𝑆 )  =  (  I   ↾  𝐹 ) |