Step |
Hyp |
Ref |
Expression |
1 |
|
upgrres.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
upgrres.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
3 |
|
upgrres.f |
⊢ 𝐹 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } |
4 |
|
df-ima |
⊢ ( 𝐸 “ 𝐹 ) = ran ( 𝐸 ↾ 𝐹 ) |
5 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐸 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑗 ) ) |
6 |
|
neleq2 |
⊢ ( ( 𝐸 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑗 ) → ( 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) ↔ 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) ) ) |
7 |
5 6
|
syl |
⊢ ( 𝑖 = 𝑗 → ( 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) ↔ 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) ) ) |
8 |
7 3
|
elrab2 |
⊢ ( 𝑗 ∈ 𝐹 ↔ ( 𝑗 ∈ dom 𝐸 ∧ 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) ) ) |
9 |
1 2
|
upgrf |
⊢ ( 𝐺 ∈ UPGraph → 𝐸 : dom 𝐸 ⟶ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) |
10 |
|
ffvelrn |
⊢ ( ( 𝐸 : dom 𝐸 ⟶ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ∧ 𝑗 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) |
11 |
|
fveq2 |
⊢ ( 𝑝 = ( 𝐸 ‘ 𝑗 ) → ( ♯ ‘ 𝑝 ) = ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) ) ) |
12 |
11
|
breq1d |
⊢ ( 𝑝 = ( 𝐸 ‘ 𝑗 ) → ( ( ♯ ‘ 𝑝 ) ≤ 2 ↔ ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ 2 ) ) |
13 |
12
|
elrab |
⊢ ( ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ↔ ( ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ 2 ) ) |
14 |
|
eldifsn |
⊢ ( ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ↔ ( ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 𝑉 ∧ ( 𝐸 ‘ 𝑗 ) ≠ ∅ ) ) |
15 |
|
simpl |
⊢ ( ( ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 𝑉 ∧ 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) ) → ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 𝑉 ) |
16 |
|
elpwi |
⊢ ( ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 𝑉 → ( 𝐸 ‘ 𝑗 ) ⊆ 𝑉 ) |
17 |
16
|
adantr |
⊢ ( ( ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 𝑉 ∧ 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) ) → ( 𝐸 ‘ 𝑗 ) ⊆ 𝑉 ) |
18 |
|
simpr |
⊢ ( ( ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 𝑉 ∧ 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) ) → 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) ) |
19 |
|
elpwdifsn |
⊢ ( ( ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 𝑉 ∧ ( 𝐸 ‘ 𝑗 ) ⊆ 𝑉 ∧ 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) ) → ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) |
20 |
15 17 18 19
|
syl3anc |
⊢ ( ( ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 𝑉 ∧ 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) ) → ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) |
21 |
20
|
ex |
⊢ ( ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 𝑉 → ( 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) → ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) |
22 |
21
|
adantr |
⊢ ( ( ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 𝑉 ∧ ( 𝐸 ‘ 𝑗 ) ≠ ∅ ) → ( 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) → ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) |
23 |
14 22
|
sylbi |
⊢ ( ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) → ( 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) → ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) |
24 |
23
|
adantr |
⊢ ( ( ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ 2 ) → ( 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) → ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) |
25 |
24
|
imp |
⊢ ( ( ( ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ 2 ) ∧ 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) ) → ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) |
26 |
|
eldifsni |
⊢ ( ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) → ( 𝐸 ‘ 𝑗 ) ≠ ∅ ) |
27 |
26
|
adantr |
⊢ ( ( ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ 2 ) → ( 𝐸 ‘ 𝑗 ) ≠ ∅ ) |
28 |
27
|
adantr |
⊢ ( ( ( ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ 2 ) ∧ 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) ) → ( 𝐸 ‘ 𝑗 ) ≠ ∅ ) |
29 |
|
eldifsn |
⊢ ( ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ↔ ( ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∧ ( 𝐸 ‘ 𝑗 ) ≠ ∅ ) ) |
30 |
25 28 29
|
sylanbrc |
⊢ ( ( ( ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ 2 ) ∧ 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) ) → ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ) |
31 |
|
simpr |
⊢ ( ( ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ 2 ) → ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ 2 ) |
32 |
31
|
adantr |
⊢ ( ( ( ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ 2 ) ∧ 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) ) → ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ 2 ) |
33 |
12 30 32
|
elrabd |
⊢ ( ( ( ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ 2 ) ∧ 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) ) → ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) |
34 |
33
|
ex |
⊢ ( ( ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ 2 ) → ( 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) → ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
35 |
34
|
a1d |
⊢ ( ( ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ 2 ) → ( 𝑁 ∈ 𝑉 → ( 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) → ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) ) |
36 |
13 35
|
sylbi |
⊢ ( ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } → ( 𝑁 ∈ 𝑉 → ( 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) → ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) ) |
37 |
10 36
|
syl |
⊢ ( ( 𝐸 : dom 𝐸 ⟶ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ∧ 𝑗 ∈ dom 𝐸 ) → ( 𝑁 ∈ 𝑉 → ( 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) → ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) ) |
38 |
37
|
ex |
⊢ ( 𝐸 : dom 𝐸 ⟶ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } → ( 𝑗 ∈ dom 𝐸 → ( 𝑁 ∈ 𝑉 → ( 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) → ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) ) ) |
39 |
38
|
com23 |
⊢ ( 𝐸 : dom 𝐸 ⟶ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } → ( 𝑁 ∈ 𝑉 → ( 𝑗 ∈ dom 𝐸 → ( 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) → ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) ) ) |
40 |
9 39
|
syl |
⊢ ( 𝐺 ∈ UPGraph → ( 𝑁 ∈ 𝑉 → ( 𝑗 ∈ dom 𝐸 → ( 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) → ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) ) ) |
41 |
40
|
imp4b |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( ( 𝑗 ∈ dom 𝐸 ∧ 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) ) → ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
42 |
8 41
|
syl5bi |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑗 ∈ 𝐹 → ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
43 |
42
|
ralrimiv |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ∀ 𝑗 ∈ 𝐹 ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) |
44 |
|
upgruhgr |
⊢ ( 𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph ) |
45 |
2
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun 𝐸 ) |
46 |
44 45
|
syl |
⊢ ( 𝐺 ∈ UPGraph → Fun 𝐸 ) |
47 |
46
|
adantr |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → Fun 𝐸 ) |
48 |
3
|
ssrab3 |
⊢ 𝐹 ⊆ dom 𝐸 |
49 |
|
funimass4 |
⊢ ( ( Fun 𝐸 ∧ 𝐹 ⊆ dom 𝐸 ) → ( ( 𝐸 “ 𝐹 ) ⊆ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ↔ ∀ 𝑗 ∈ 𝐹 ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
50 |
47 48 49
|
sylancl |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( ( 𝐸 “ 𝐹 ) ⊆ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ↔ ∀ 𝑗 ∈ 𝐹 ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
51 |
43 50
|
mpbird |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐸 “ 𝐹 ) ⊆ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) |
52 |
4 51
|
eqsstrrid |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ran ( 𝐸 ↾ 𝐹 ) ⊆ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) |