| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isupgr.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | isupgr.e | ⊢ 𝐸  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | ssrab2 | ⊢ { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 }  ⊆  ( 𝒫  𝑉  ∖  { ∅ } ) | 
						
							| 4 |  | difss | ⊢ ( 𝒫  𝑉  ∖  { ∅ } )  ⊆  𝒫  𝑉 | 
						
							| 5 | 3 4 | sstri | ⊢ { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 }  ⊆  𝒫  𝑉 | 
						
							| 6 | 1 2 | upgrf | ⊢ ( 𝐺  ∈  UPGraph  →  𝐸 : dom  𝐸 ⟶ { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } ) | 
						
							| 7 | 6 | ffvelcdmda | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐹  ∈  dom  𝐸 )  →  ( 𝐸 ‘ 𝐹 )  ∈  { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } ) | 
						
							| 8 | 5 7 | sselid | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐹  ∈  dom  𝐸 )  →  ( 𝐸 ‘ 𝐹 )  ∈  𝒫  𝑉 ) | 
						
							| 9 | 8 | elpwid | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐹  ∈  dom  𝐸 )  →  ( 𝐸 ‘ 𝐹 )  ⊆  𝑉 ) |