Step |
Hyp |
Ref |
Expression |
1 |
|
isupgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
isupgr.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
3 |
|
ssrab2 |
⊢ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ⊆ ( 𝒫 𝑉 ∖ { ∅ } ) |
4 |
|
difss |
⊢ ( 𝒫 𝑉 ∖ { ∅ } ) ⊆ 𝒫 𝑉 |
5 |
3 4
|
sstri |
⊢ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ⊆ 𝒫 𝑉 |
6 |
1 2
|
upgrf |
⊢ ( 𝐺 ∈ UPGraph → 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
7 |
6
|
ffvelrnda |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝐹 ) ∈ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
8 |
5 7
|
sselid |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝐹 ) ∈ 𝒫 𝑉 ) |
9 |
8
|
elpwid |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝐹 ) ⊆ 𝑉 ) |