Metamath Proof Explorer


Theorem upgrun

Description: The union U of two pseudographs G and H with the same vertex set V is a pseudograph with the vertex V and the union ( E u. F ) of the (indexed) edges. (Contributed by AV, 12-Oct-2020) (Revised by AV, 24-Oct-2021)

Ref Expression
Hypotheses upgrun.g ( 𝜑𝐺 ∈ UPGraph )
upgrun.h ( 𝜑𝐻 ∈ UPGraph )
upgrun.e 𝐸 = ( iEdg ‘ 𝐺 )
upgrun.f 𝐹 = ( iEdg ‘ 𝐻 )
upgrun.vg 𝑉 = ( Vtx ‘ 𝐺 )
upgrun.vh ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 )
upgrun.i ( 𝜑 → ( dom 𝐸 ∩ dom 𝐹 ) = ∅ )
upgrun.u ( 𝜑𝑈𝑊 )
upgrun.v ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 )
upgrun.un ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐸𝐹 ) )
Assertion upgrun ( 𝜑𝑈 ∈ UPGraph )

Proof

Step Hyp Ref Expression
1 upgrun.g ( 𝜑𝐺 ∈ UPGraph )
2 upgrun.h ( 𝜑𝐻 ∈ UPGraph )
3 upgrun.e 𝐸 = ( iEdg ‘ 𝐺 )
4 upgrun.f 𝐹 = ( iEdg ‘ 𝐻 )
5 upgrun.vg 𝑉 = ( Vtx ‘ 𝐺 )
6 upgrun.vh ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 )
7 upgrun.i ( 𝜑 → ( dom 𝐸 ∩ dom 𝐹 ) = ∅ )
8 upgrun.u ( 𝜑𝑈𝑊 )
9 upgrun.v ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 )
10 upgrun.un ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐸𝐹 ) )
11 5 3 upgrf ( 𝐺 ∈ UPGraph → 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } )
12 1 11 syl ( 𝜑𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } )
13 eqid ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 )
14 13 4 upgrf ( 𝐻 ∈ UPGraph → 𝐹 : dom 𝐹 ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } )
15 2 14 syl ( 𝜑𝐹 : dom 𝐹 ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } )
16 6 eqcomd ( 𝜑𝑉 = ( Vtx ‘ 𝐻 ) )
17 16 pweqd ( 𝜑 → 𝒫 𝑉 = 𝒫 ( Vtx ‘ 𝐻 ) )
18 17 difeq1d ( 𝜑 → ( 𝒫 𝑉 ∖ { ∅ } ) = ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) )
19 18 rabeqdv ( 𝜑 → { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } = { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } )
20 19 feq3d ( 𝜑 → ( 𝐹 : dom 𝐹 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ↔ 𝐹 : dom 𝐹 ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) )
21 15 20 mpbird ( 𝜑𝐹 : dom 𝐹 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } )
22 12 21 7 fun2d ( 𝜑 → ( 𝐸𝐹 ) : ( dom 𝐸 ∪ dom 𝐹 ) ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } )
23 10 dmeqd ( 𝜑 → dom ( iEdg ‘ 𝑈 ) = dom ( 𝐸𝐹 ) )
24 dmun dom ( 𝐸𝐹 ) = ( dom 𝐸 ∪ dom 𝐹 )
25 23 24 eqtrdi ( 𝜑 → dom ( iEdg ‘ 𝑈 ) = ( dom 𝐸 ∪ dom 𝐹 ) )
26 9 pweqd ( 𝜑 → 𝒫 ( Vtx ‘ 𝑈 ) = 𝒫 𝑉 )
27 26 difeq1d ( 𝜑 → ( 𝒫 ( Vtx ‘ 𝑈 ) ∖ { ∅ } ) = ( 𝒫 𝑉 ∖ { ∅ } ) )
28 27 rabeqdv ( 𝜑 → { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝑈 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } = { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } )
29 10 25 28 feq123d ( 𝜑 → ( ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝑈 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ↔ ( 𝐸𝐹 ) : ( dom 𝐸 ∪ dom 𝐹 ) ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) )
30 22 29 mpbird ( 𝜑 → ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝑈 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } )
31 eqid ( Vtx ‘ 𝑈 ) = ( Vtx ‘ 𝑈 )
32 eqid ( iEdg ‘ 𝑈 ) = ( iEdg ‘ 𝑈 )
33 31 32 isupgr ( 𝑈𝑊 → ( 𝑈 ∈ UPGraph ↔ ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝑈 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) )
34 8 33 syl ( 𝜑 → ( 𝑈 ∈ UPGraph ↔ ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝑈 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) )
35 30 34 mpbird ( 𝜑𝑈 ∈ UPGraph )