Step |
Hyp |
Ref |
Expression |
1 |
|
upgrun.g |
⊢ ( 𝜑 → 𝐺 ∈ UPGraph ) |
2 |
|
upgrun.h |
⊢ ( 𝜑 → 𝐻 ∈ UPGraph ) |
3 |
|
upgrun.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
4 |
|
upgrun.f |
⊢ 𝐹 = ( iEdg ‘ 𝐻 ) |
5 |
|
upgrun.vg |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
6 |
|
upgrun.vh |
⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 ) |
7 |
|
upgrun.i |
⊢ ( 𝜑 → ( dom 𝐸 ∩ dom 𝐹 ) = ∅ ) |
8 |
|
upgrun.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑊 ) |
9 |
|
upgrun.v |
⊢ ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 ) |
10 |
|
upgrun.un |
⊢ ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐸 ∪ 𝐹 ) ) |
11 |
5 3
|
upgrf |
⊢ ( 𝐺 ∈ UPGraph → 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
12 |
1 11
|
syl |
⊢ ( 𝜑 → 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
13 |
|
eqid |
⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) |
14 |
13 4
|
upgrf |
⊢ ( 𝐻 ∈ UPGraph → 𝐹 : dom 𝐹 ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
15 |
2 14
|
syl |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
16 |
6
|
eqcomd |
⊢ ( 𝜑 → 𝑉 = ( Vtx ‘ 𝐻 ) ) |
17 |
16
|
pweqd |
⊢ ( 𝜑 → 𝒫 𝑉 = 𝒫 ( Vtx ‘ 𝐻 ) ) |
18 |
17
|
difeq1d |
⊢ ( 𝜑 → ( 𝒫 𝑉 ∖ { ∅ } ) = ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) ) |
19 |
18
|
rabeqdv |
⊢ ( 𝜑 → { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } = { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
20 |
19
|
feq3d |
⊢ ( 𝜑 → ( 𝐹 : dom 𝐹 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ↔ 𝐹 : dom 𝐹 ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
21 |
15 20
|
mpbird |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
22 |
12 21 7
|
fun2d |
⊢ ( 𝜑 → ( 𝐸 ∪ 𝐹 ) : ( dom 𝐸 ∪ dom 𝐹 ) ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
23 |
10
|
dmeqd |
⊢ ( 𝜑 → dom ( iEdg ‘ 𝑈 ) = dom ( 𝐸 ∪ 𝐹 ) ) |
24 |
|
dmun |
⊢ dom ( 𝐸 ∪ 𝐹 ) = ( dom 𝐸 ∪ dom 𝐹 ) |
25 |
23 24
|
eqtrdi |
⊢ ( 𝜑 → dom ( iEdg ‘ 𝑈 ) = ( dom 𝐸 ∪ dom 𝐹 ) ) |
26 |
9
|
pweqd |
⊢ ( 𝜑 → 𝒫 ( Vtx ‘ 𝑈 ) = 𝒫 𝑉 ) |
27 |
26
|
difeq1d |
⊢ ( 𝜑 → ( 𝒫 ( Vtx ‘ 𝑈 ) ∖ { ∅ } ) = ( 𝒫 𝑉 ∖ { ∅ } ) ) |
28 |
27
|
rabeqdv |
⊢ ( 𝜑 → { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝑈 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } = { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
29 |
10 25 28
|
feq123d |
⊢ ( 𝜑 → ( ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝑈 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ↔ ( 𝐸 ∪ 𝐹 ) : ( dom 𝐸 ∪ dom 𝐹 ) ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
30 |
22 29
|
mpbird |
⊢ ( 𝜑 → ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝑈 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
31 |
|
eqid |
⊢ ( Vtx ‘ 𝑈 ) = ( Vtx ‘ 𝑈 ) |
32 |
|
eqid |
⊢ ( iEdg ‘ 𝑈 ) = ( iEdg ‘ 𝑈 ) |
33 |
31 32
|
isupgr |
⊢ ( 𝑈 ∈ 𝑊 → ( 𝑈 ∈ UPGraph ↔ ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝑈 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
34 |
8 33
|
syl |
⊢ ( 𝜑 → ( 𝑈 ∈ UPGraph ↔ ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝑈 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
35 |
30 34
|
mpbird |
⊢ ( 𝜑 → 𝑈 ∈ UPGraph ) |