Step |
Hyp |
Ref |
Expression |
1 |
|
wrdfin |
⊢ ( 𝐹 ∈ Word dom 𝐼 → 𝐹 ∈ Fin ) |
2 |
|
wrdf |
⊢ ( 𝐹 ∈ Word dom 𝐼 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) |
3 |
|
simpr |
⊢ ( ( 𝐹 ∈ Fin ∧ 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) |
4 |
3
|
adantr |
⊢ ( ( ( 𝐹 ∈ Fin ∧ 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) ∧ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) |
5 |
|
2fveq3 |
⊢ ( 𝑘 = 𝑥 → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
6 |
|
fveq2 |
⊢ ( 𝑘 = 𝑥 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑥 ) ) |
7 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑥 → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) ) |
8 |
6 7
|
preq12d |
⊢ ( 𝑘 = 𝑥 → { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) |
9 |
5 8
|
eqeq12d |
⊢ ( 𝑘 = 𝑥 → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) ) |
10 |
9
|
rspcv |
⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) ) |
11 |
|
2fveq3 |
⊢ ( 𝑘 = 𝑦 → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
12 |
|
fveq2 |
⊢ ( 𝑘 = 𝑦 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑦 ) ) |
13 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑦 → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ) |
14 |
12 13
|
preq12d |
⊢ ( 𝑘 = 𝑦 → { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) |
15 |
11 14
|
eqeq12d |
⊢ ( 𝑘 = 𝑦 → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) ) |
16 |
15
|
rspcv |
⊢ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) ) |
17 |
10 16
|
anim12ii |
⊢ ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) ) ) |
18 |
|
fveq2 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
19 |
|
simpl |
⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) |
20 |
19
|
eqcomd |
⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) → { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
21 |
20
|
adantl |
⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) ) → { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
22 |
|
simpl |
⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
23 |
|
simpr |
⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) |
24 |
23
|
adantl |
⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) |
25 |
21 22 24
|
3eqtrd |
⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) ) → { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) |
26 |
|
fvex |
⊢ ( 𝑃 ‘ 𝑥 ) ∈ V |
27 |
|
fvex |
⊢ ( 𝑃 ‘ ( 𝑥 + 1 ) ) ∈ V |
28 |
|
fvex |
⊢ ( 𝑃 ‘ 𝑦 ) ∈ V |
29 |
|
fvex |
⊢ ( 𝑃 ‘ ( 𝑦 + 1 ) ) ∈ V |
30 |
26 27 28 29
|
preq12b |
⊢ ( { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ↔ ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑦 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ) ∨ ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) ) ) ) |
31 |
|
dff13 |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 ↔ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
32 |
|
elfzofz |
⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑥 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
33 |
|
elfzofz |
⊢ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑦 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
34 |
|
fveqeq2 |
⊢ ( 𝑎 = 𝑥 → ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) ↔ ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑏 ) ) ) |
35 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑥 → ( 𝑎 = 𝑏 ↔ 𝑥 = 𝑏 ) ) |
36 |
34 35
|
imbi12d |
⊢ ( 𝑎 = 𝑥 → ( ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ↔ ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑏 ) → 𝑥 = 𝑏 ) ) ) |
37 |
|
fveq2 |
⊢ ( 𝑏 = 𝑦 → ( 𝑃 ‘ 𝑏 ) = ( 𝑃 ‘ 𝑦 ) ) |
38 |
37
|
eqeq2d |
⊢ ( 𝑏 = 𝑦 → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑏 ) ↔ ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑦 ) ) ) |
39 |
|
eqeq2 |
⊢ ( 𝑏 = 𝑦 → ( 𝑥 = 𝑏 ↔ 𝑥 = 𝑦 ) ) |
40 |
38 39
|
imbi12d |
⊢ ( 𝑏 = 𝑦 → ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑏 ) → 𝑥 = 𝑏 ) ↔ ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
41 |
36 40
|
rspc2v |
⊢ ( ( 𝑥 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
42 |
32 33 41
|
syl2an |
⊢ ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
43 |
42
|
a1dd |
⊢ ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) → ( 𝐹 ∈ Fin → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) |
44 |
43
|
com14 |
⊢ ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑦 ) → ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) → ( 𝐹 ∈ Fin → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑥 = 𝑦 ) ) ) ) |
45 |
44
|
adantr |
⊢ ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑦 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ) → ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) → ( 𝐹 ∈ Fin → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑥 = 𝑦 ) ) ) ) |
46 |
|
hashcl |
⊢ ( 𝐹 ∈ Fin → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
47 |
32
|
a1i |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑥 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) |
48 |
|
fzofzp1 |
⊢ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝑦 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
49 |
47 48
|
anim12d1 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑥 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ ( 𝑦 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) ) |
50 |
49
|
imp |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑥 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ ( 𝑦 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) |
51 |
|
fveq2 |
⊢ ( 𝑏 = ( 𝑦 + 1 ) → ( 𝑃 ‘ 𝑏 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ) |
52 |
51
|
eqeq2d |
⊢ ( 𝑏 = ( 𝑦 + 1 ) → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑏 ) ↔ ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ) ) |
53 |
|
eqeq2 |
⊢ ( 𝑏 = ( 𝑦 + 1 ) → ( 𝑥 = 𝑏 ↔ 𝑥 = ( 𝑦 + 1 ) ) ) |
54 |
52 53
|
imbi12d |
⊢ ( 𝑏 = ( 𝑦 + 1 ) → ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑏 ) → 𝑥 = 𝑏 ) ↔ ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) → 𝑥 = ( 𝑦 + 1 ) ) ) ) |
55 |
36 54
|
rspc2v |
⊢ ( ( 𝑥 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ ( 𝑦 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) → 𝑥 = ( 𝑦 + 1 ) ) ) ) |
56 |
50 55
|
syl |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) → 𝑥 = ( 𝑦 + 1 ) ) ) ) |
57 |
56
|
imp |
⊢ ( ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∧ ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) → 𝑥 = ( 𝑦 + 1 ) ) ) |
58 |
|
fzofzp1 |
⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝑥 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
59 |
58
|
a1i |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝑥 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) |
60 |
59 33
|
anim12d1 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑥 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) ) |
61 |
60
|
imp |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑥 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) |
62 |
|
fveqeq2 |
⊢ ( 𝑎 = ( 𝑥 + 1 ) → ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) ↔ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑏 ) ) ) |
63 |
|
eqeq1 |
⊢ ( 𝑎 = ( 𝑥 + 1 ) → ( 𝑎 = 𝑏 ↔ ( 𝑥 + 1 ) = 𝑏 ) ) |
64 |
62 63
|
imbi12d |
⊢ ( 𝑎 = ( 𝑥 + 1 ) → ( ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ↔ ( ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑏 ) → ( 𝑥 + 1 ) = 𝑏 ) ) ) |
65 |
37
|
eqeq2d |
⊢ ( 𝑏 = 𝑦 → ( ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑏 ) ↔ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) ) ) |
66 |
|
eqeq2 |
⊢ ( 𝑏 = 𝑦 → ( ( 𝑥 + 1 ) = 𝑏 ↔ ( 𝑥 + 1 ) = 𝑦 ) ) |
67 |
65 66
|
imbi12d |
⊢ ( 𝑏 = 𝑦 → ( ( ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑏 ) → ( 𝑥 + 1 ) = 𝑏 ) ↔ ( ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) → ( 𝑥 + 1 ) = 𝑦 ) ) ) |
68 |
64 67
|
rspc2v |
⊢ ( ( ( 𝑥 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) → ( ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) → ( 𝑥 + 1 ) = 𝑦 ) ) ) |
69 |
61 68
|
syl |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) → ( ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) → ( 𝑥 + 1 ) = 𝑦 ) ) ) |
70 |
69
|
imp |
⊢ ( ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∧ ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) → ( ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) → ( 𝑥 + 1 ) = 𝑦 ) ) |
71 |
57 70
|
anim12d |
⊢ ( ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∧ ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) → ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) ) → ( 𝑥 = ( 𝑦 + 1 ) ∧ ( 𝑥 + 1 ) = 𝑦 ) ) ) |
72 |
71
|
expimpd |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ∧ ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) ) ) → ( 𝑥 = ( 𝑦 + 1 ) ∧ ( 𝑥 + 1 ) = 𝑦 ) ) ) |
73 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 + 1 ) = ( ( 𝑦 + 1 ) + 1 ) ) |
74 |
73
|
eqeq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 + 1 ) = 𝑦 ↔ ( ( 𝑦 + 1 ) + 1 ) = 𝑦 ) ) |
75 |
74
|
adantl |
⊢ ( ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑥 = ( 𝑦 + 1 ) ) → ( ( 𝑥 + 1 ) = 𝑦 ↔ ( ( 𝑦 + 1 ) + 1 ) = 𝑦 ) ) |
76 |
|
elfzonn0 |
⊢ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑦 ∈ ℕ0 ) |
77 |
|
nn0cn |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℂ ) |
78 |
|
add1p1 |
⊢ ( 𝑦 ∈ ℂ → ( ( 𝑦 + 1 ) + 1 ) = ( 𝑦 + 2 ) ) |
79 |
77 78
|
syl |
⊢ ( 𝑦 ∈ ℕ0 → ( ( 𝑦 + 1 ) + 1 ) = ( 𝑦 + 2 ) ) |
80 |
79
|
eqeq1d |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ( 𝑦 + 1 ) + 1 ) = 𝑦 ↔ ( 𝑦 + 2 ) = 𝑦 ) ) |
81 |
|
2cnd |
⊢ ( 𝑦 ∈ ℕ0 → 2 ∈ ℂ ) |
82 |
|
2ne0 |
⊢ 2 ≠ 0 |
83 |
82
|
a1i |
⊢ ( 𝑦 ∈ ℕ0 → 2 ≠ 0 ) |
84 |
|
addn0nid |
⊢ ( ( 𝑦 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( 𝑦 + 2 ) ≠ 𝑦 ) |
85 |
77 81 83 84
|
syl3anc |
⊢ ( 𝑦 ∈ ℕ0 → ( 𝑦 + 2 ) ≠ 𝑦 ) |
86 |
|
eqneqall |
⊢ ( ( 𝑦 + 2 ) = 𝑦 → ( ( 𝑦 + 2 ) ≠ 𝑦 → 𝑥 = 𝑦 ) ) |
87 |
85 86
|
syl5com |
⊢ ( 𝑦 ∈ ℕ0 → ( ( 𝑦 + 2 ) = 𝑦 → 𝑥 = 𝑦 ) ) |
88 |
80 87
|
sylbid |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ( 𝑦 + 1 ) + 1 ) = 𝑦 → 𝑥 = 𝑦 ) ) |
89 |
76 88
|
syl |
⊢ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( ( 𝑦 + 1 ) + 1 ) = 𝑦 → 𝑥 = 𝑦 ) ) |
90 |
89
|
adantl |
⊢ ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝑦 + 1 ) + 1 ) = 𝑦 → 𝑥 = 𝑦 ) ) |
91 |
90
|
adantr |
⊢ ( ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑥 = ( 𝑦 + 1 ) ) → ( ( ( 𝑦 + 1 ) + 1 ) = 𝑦 → 𝑥 = 𝑦 ) ) |
92 |
75 91
|
sylbid |
⊢ ( ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑥 = ( 𝑦 + 1 ) ) → ( ( 𝑥 + 1 ) = 𝑦 → 𝑥 = 𝑦 ) ) |
93 |
92
|
expimpd |
⊢ ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑥 = ( 𝑦 + 1 ) ∧ ( 𝑥 + 1 ) = 𝑦 ) → 𝑥 = 𝑦 ) ) |
94 |
93
|
adantl |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑥 = ( 𝑦 + 1 ) ∧ ( 𝑥 + 1 ) = 𝑦 ) → 𝑥 = 𝑦 ) ) |
95 |
72 94
|
syld |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ∧ ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) ) ) → 𝑥 = 𝑦 ) ) |
96 |
95
|
ex |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ∧ ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) ) ) → 𝑥 = 𝑦 ) ) ) |
97 |
46 96
|
syl |
⊢ ( 𝐹 ∈ Fin → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ∧ ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) ) ) → 𝑥 = 𝑦 ) ) ) |
98 |
97
|
com3l |
⊢ ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ∧ ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) ) ) → ( 𝐹 ∈ Fin → 𝑥 = 𝑦 ) ) ) |
99 |
98
|
expd |
⊢ ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) → ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) ) → ( 𝐹 ∈ Fin → 𝑥 = 𝑦 ) ) ) ) |
100 |
99
|
com34 |
⊢ ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) → ( 𝐹 ∈ Fin → ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) ) ) ) |
101 |
100
|
com14 |
⊢ ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) ) → ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) → ( 𝐹 ∈ Fin → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑥 = 𝑦 ) ) ) ) |
102 |
45 101
|
jaoi |
⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑦 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ) ∨ ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) ) ) → ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) → ( 𝐹 ∈ Fin → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑥 = 𝑦 ) ) ) ) |
103 |
102
|
adantld |
⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑦 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ) ∨ ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) ) ) → ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) → ( 𝐹 ∈ Fin → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑥 = 𝑦 ) ) ) ) |
104 |
31 103
|
syl5bi |
⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑦 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ) ∨ ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) ) ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 → ( 𝐹 ∈ Fin → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑥 = 𝑦 ) ) ) ) |
105 |
104
|
com23 |
⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑦 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ) ∨ ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) ) ) → ( 𝐹 ∈ Fin → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑥 = 𝑦 ) ) ) ) |
106 |
30 105
|
sylbi |
⊢ ( { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } → ( 𝐹 ∈ Fin → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑥 = 𝑦 ) ) ) ) |
107 |
25 106
|
syl |
⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) ) → ( 𝐹 ∈ Fin → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑥 = 𝑦 ) ) ) ) |
108 |
107
|
ex |
⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) → ( 𝐹 ∈ Fin → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑥 = 𝑦 ) ) ) ) ) |
109 |
18 108
|
syl |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) → ( 𝐹 ∈ Fin → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑥 = 𝑦 ) ) ) ) ) |
110 |
109
|
com15 |
⊢ ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) → ( 𝐹 ∈ Fin → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) ) |
111 |
17 110
|
syld |
⊢ ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( 𝐹 ∈ Fin → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) ) |
112 |
111
|
com14 |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( 𝐹 ∈ Fin → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) ) |
113 |
112
|
imp |
⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) → ( 𝐹 ∈ Fin → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) |
114 |
113
|
impcom |
⊢ ( ( 𝐹 ∈ Fin ∧ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
115 |
114
|
ralrimivv |
⊢ ( ( 𝐹 ∈ Fin ∧ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) → ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
116 |
115
|
adantlr |
⊢ ( ( ( 𝐹 ∈ Fin ∧ 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) ∧ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) → ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
117 |
|
dff13 |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ↔ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
118 |
4 116 117
|
sylanbrc |
⊢ ( ( ( 𝐹 ∈ Fin ∧ 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) ∧ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) |
119 |
|
df-f1 |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ↔ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ∧ Fun ◡ 𝐹 ) ) |
120 |
118 119
|
sylib |
⊢ ( ( ( 𝐹 ∈ Fin ∧ 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) ∧ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) → ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ∧ Fun ◡ 𝐹 ) ) |
121 |
|
simpr |
⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ∧ Fun ◡ 𝐹 ) → Fun ◡ 𝐹 ) |
122 |
120 121
|
syl |
⊢ ( ( ( 𝐹 ∈ Fin ∧ 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) ∧ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) → Fun ◡ 𝐹 ) |
123 |
122
|
ex |
⊢ ( ( 𝐹 ∈ Fin ∧ 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) → ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) → Fun ◡ 𝐹 ) ) |
124 |
123
|
expd |
⊢ ( ( 𝐹 ∈ Fin ∧ 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → Fun ◡ 𝐹 ) ) ) |
125 |
1 2 124
|
syl2anc |
⊢ ( 𝐹 ∈ Word dom 𝐼 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → Fun ◡ 𝐹 ) ) ) |
126 |
125
|
impcom |
⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 ∧ 𝐹 ∈ Word dom 𝐼 ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → Fun ◡ 𝐹 ) ) |