| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3simpc | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ 𝑃 )  →  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ 𝑃 ) ) | 
						
							| 2 |  | upgrspthswlk | ⊢ ( 𝐺  ∈  UPGraph  →  ( SPaths ‘ 𝐺 )  =  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  Fun  ◡ 𝑝 ) } ) | 
						
							| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ 𝑃 )  →  ( SPaths ‘ 𝐺 )  =  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  Fun  ◡ 𝑝 ) } ) | 
						
							| 4 | 3 | breqd | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ 𝑃 )  →  ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃  ↔  𝐹 { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  Fun  ◡ 𝑝 ) } 𝑃 ) ) | 
						
							| 5 |  | wlkv | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ( 𝐺  ∈  V  ∧  𝐹  ∈  V  ∧  𝑃  ∈  V ) ) | 
						
							| 6 |  | 3simpc | ⊢ ( ( 𝐺  ∈  V  ∧  𝐹  ∈  V  ∧  𝑃  ∈  V )  →  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) ) | 
						
							| 8 | 7 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ 𝑃 )  →  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) ) | 
						
							| 9 |  | breq12 | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑝  =  𝑃 )  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ↔  𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) ) | 
						
							| 10 |  | cnveq | ⊢ ( 𝑝  =  𝑃  →  ◡ 𝑝  =  ◡ 𝑃 ) | 
						
							| 11 | 10 | funeqd | ⊢ ( 𝑝  =  𝑃  →  ( Fun  ◡ 𝑝  ↔  Fun  ◡ 𝑃 ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑝  =  𝑃 )  →  ( Fun  ◡ 𝑝  ↔  Fun  ◡ 𝑃 ) ) | 
						
							| 13 | 9 12 | anbi12d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑝  =  𝑃 )  →  ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  Fun  ◡ 𝑝 )  ↔  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ 𝑃 ) ) ) | 
						
							| 14 |  | eqid | ⊢ { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  Fun  ◡ 𝑝 ) }  =  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  Fun  ◡ 𝑝 ) } | 
						
							| 15 | 13 14 | brabga | ⊢ ( ( 𝐹  ∈  V  ∧  𝑃  ∈  V )  →  ( 𝐹 { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  Fun  ◡ 𝑝 ) } 𝑃  ↔  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ 𝑃 ) ) ) | 
						
							| 16 | 8 15 | syl | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ 𝑃 )  →  ( 𝐹 { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  Fun  ◡ 𝑝 ) } 𝑃  ↔  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ 𝑃 ) ) ) | 
						
							| 17 | 4 16 | bitrd | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ 𝑃 )  →  ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃  ↔  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ 𝑃 ) ) ) | 
						
							| 18 | 1 17 | mpbird | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ 𝑃 )  →  𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) |