Step |
Hyp |
Ref |
Expression |
1 |
|
3simpc |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ) |
2 |
|
upgrspthswlk |
⊢ ( 𝐺 ∈ UPGraph → ( SPaths ‘ 𝐺 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ Fun ◡ 𝑝 ) } ) |
3 |
2
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) → ( SPaths ‘ 𝐺 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ Fun ◡ 𝑝 ) } ) |
4 |
3
|
breqd |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) → ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ↔ 𝐹 { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ Fun ◡ 𝑝 ) } 𝑃 ) ) |
5 |
|
wlkv |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) |
6 |
|
3simpc |
⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) → ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) |
7 |
5 6
|
syl |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) |
8 |
7
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) → ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) |
9 |
|
breq12 |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ↔ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) ) |
10 |
|
cnveq |
⊢ ( 𝑝 = 𝑃 → ◡ 𝑝 = ◡ 𝑃 ) |
11 |
10
|
funeqd |
⊢ ( 𝑝 = 𝑃 → ( Fun ◡ 𝑝 ↔ Fun ◡ 𝑃 ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( Fun ◡ 𝑝 ↔ Fun ◡ 𝑃 ) ) |
13 |
9 12
|
anbi12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ Fun ◡ 𝑝 ) ↔ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ) ) |
14 |
|
eqid |
⊢ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ Fun ◡ 𝑝 ) } = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ Fun ◡ 𝑝 ) } |
15 |
13 14
|
brabga |
⊢ ( ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) → ( 𝐹 { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ Fun ◡ 𝑝 ) } 𝑃 ↔ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ) ) |
16 |
8 15
|
syl |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) → ( 𝐹 { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ Fun ◡ 𝑝 ) } 𝑃 ↔ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ) ) |
17 |
4 16
|
bitrd |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) → ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ) ) |
18 |
1 17
|
mpbird |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) → 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) |