| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlkvtxedg.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 3 |  | eqid | ⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 ) | 
						
							| 4 | 2 3 | upgriswlk | ⊢ ( 𝐺  ∈  UPGraph  →  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ↔  ( 𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) } ) ) ) | 
						
							| 5 | 3 1 | upgredginwlk | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 ) )  →  ( 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  𝐸 ) ) | 
						
							| 6 | 5 | ancoms | ⊢ ( ( 𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝐺  ∈  UPGraph )  →  ( 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  𝐸 ) ) | 
						
							| 7 | 6 | imp | ⊢ ( ( ( 𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝐺  ∈  UPGraph )  ∧  𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  𝐸 ) | 
						
							| 8 |  | eleq1 | ⊢ ( { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  =  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  →  ( { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ∈  𝐸  ↔  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  𝐸 ) ) | 
						
							| 9 | 8 | eqcoms | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  →  ( { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ∈  𝐸  ↔  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  𝐸 ) ) | 
						
							| 10 | 7 9 | syl5ibrcom | ⊢ ( ( ( 𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝐺  ∈  UPGraph )  ∧  𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  →  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ∈  𝐸 ) ) | 
						
							| 11 | 10 | ralimdva | ⊢ ( ( 𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝐺  ∈  UPGraph )  →  ( ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  →  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ∈  𝐸 ) ) | 
						
							| 12 | 11 | impancom | ⊢ ( ( 𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) } )  →  ( 𝐺  ∈  UPGraph  →  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ∈  𝐸 ) ) | 
						
							| 13 | 12 | 3adant2 | ⊢ ( ( 𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) } )  →  ( 𝐺  ∈  UPGraph  →  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ∈  𝐸 ) ) | 
						
							| 14 | 13 | com12 | ⊢ ( 𝐺  ∈  UPGraph  →  ( ( 𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) } )  →  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ∈  𝐸 ) ) | 
						
							| 15 | 4 14 | sylbid | ⊢ ( 𝐺  ∈  UPGraph  →  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ∈  𝐸 ) ) | 
						
							| 16 | 15 | imp | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐹 ( Walks ‘ 𝐺 ) 𝑃 )  →  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ∈  𝐸 ) |