| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upxp.1 | ⊢ 𝑃  =  ( 1st   ↾  ( 𝐵  ×  𝐶 ) ) | 
						
							| 2 |  | upxp.2 | ⊢ 𝑄  =  ( 2nd   ↾  ( 𝐵  ×  𝐶 ) ) | 
						
							| 3 |  | mptexg | ⊢ ( 𝐴  ∈  𝐷  →  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 )  ∈  V ) | 
						
							| 4 |  | eueq | ⊢ ( ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 )  ∈  V  ↔  ∃! ℎ ℎ  =  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ) | 
						
							| 5 | 3 4 | sylib | ⊢ ( 𝐴  ∈  𝐷  →  ∃! ℎ ℎ  =  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ) | 
						
							| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  →  ∃! ℎ ℎ  =  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ) | 
						
							| 7 |  | ffn | ⊢ ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  →  ℎ  Fn  𝐴 ) | 
						
							| 8 | 7 | 3ad2ant1 | ⊢ ( ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝐹  =  ( 𝑃  ∘  ℎ )  ∧  𝐺  =  ( 𝑄  ∘  ℎ ) )  →  ℎ  Fn  𝐴 ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  ∧  ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝐹  =  ( 𝑃  ∘  ℎ )  ∧  𝐺  =  ( 𝑄  ∘  ℎ ) ) )  →  ℎ  Fn  𝐴 ) | 
						
							| 10 |  | ffvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝐵 ) | 
						
							| 11 |  | ffvelcdm | ⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐶  ∧  𝑥  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑥 )  ∈  𝐶 ) | 
						
							| 12 |  | opelxpi | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑥 )  ∈  𝐶 )  →  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉  ∈  ( 𝐵  ×  𝐶 ) ) | 
						
							| 13 | 10 11 12 | syl2an | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝐺 : 𝐴 ⟶ 𝐶  ∧  𝑥  ∈  𝐴 ) )  →  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉  ∈  ( 𝐵  ×  𝐶 ) ) | 
						
							| 14 | 13 | anandirs | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  ∧  𝑥  ∈  𝐴 )  →  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉  ∈  ( 𝐵  ×  𝐶 ) ) | 
						
							| 15 | 14 | ralrimiva | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  →  ∀ 𝑥  ∈  𝐴 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉  ∈  ( 𝐵  ×  𝐶 ) ) | 
						
							| 16 | 15 | 3adant1 | ⊢ ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  →  ∀ 𝑥  ∈  𝐴 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉  ∈  ( 𝐵  ×  𝐶 ) ) | 
						
							| 17 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 )  =  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) | 
						
							| 18 | 17 | fmpt | ⊢ ( ∀ 𝑥  ∈  𝐴 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉  ∈  ( 𝐵  ×  𝐶 )  ↔  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) : 𝐴 ⟶ ( 𝐵  ×  𝐶 ) ) | 
						
							| 19 | 16 18 | sylib | ⊢ ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  →  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) : 𝐴 ⟶ ( 𝐵  ×  𝐶 ) ) | 
						
							| 20 | 19 | ffnd | ⊢ ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  →  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 )  Fn  𝐴 ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  ∧  ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝐹  =  ( 𝑃  ∘  ℎ )  ∧  𝐺  =  ( 𝑄  ∘  ℎ ) ) )  →  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 )  Fn  𝐴 ) | 
						
							| 22 |  | xpss | ⊢ ( 𝐵  ×  𝐶 )  ⊆  ( V  ×  V ) | 
						
							| 23 |  | ffvelcdm | ⊢ ( ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝑧  ∈  𝐴 )  →  ( ℎ ‘ 𝑧 )  ∈  ( 𝐵  ×  𝐶 ) ) | 
						
							| 24 | 22 23 | sselid | ⊢ ( ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝑧  ∈  𝐴 )  →  ( ℎ ‘ 𝑧 )  ∈  ( V  ×  V ) ) | 
						
							| 25 | 24 | 3ad2antl1 | ⊢ ( ( ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝐹  =  ( 𝑃  ∘  ℎ )  ∧  𝐺  =  ( 𝑄  ∘  ℎ ) )  ∧  𝑧  ∈  𝐴 )  →  ( ℎ ‘ 𝑧 )  ∈  ( V  ×  V ) ) | 
						
							| 26 | 25 | adantll | ⊢ ( ( ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  ∧  ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝐹  =  ( 𝑃  ∘  ℎ )  ∧  𝐺  =  ( 𝑄  ∘  ℎ ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( ℎ ‘ 𝑧 )  ∈  ( V  ×  V ) ) | 
						
							| 27 |  | fveq1 | ⊢ ( 𝐹  =  ( 𝑃  ∘  ℎ )  →  ( 𝐹 ‘ 𝑧 )  =  ( ( 𝑃  ∘  ℎ ) ‘ 𝑧 ) ) | 
						
							| 28 | 1 | coeq1i | ⊢ ( 𝑃  ∘  ℎ )  =  ( ( 1st   ↾  ( 𝐵  ×  𝐶 ) )  ∘  ℎ ) | 
						
							| 29 | 28 | fveq1i | ⊢ ( ( 𝑃  ∘  ℎ ) ‘ 𝑧 )  =  ( ( ( 1st   ↾  ( 𝐵  ×  𝐶 ) )  ∘  ℎ ) ‘ 𝑧 ) | 
						
							| 30 | 27 29 | eqtrdi | ⊢ ( 𝐹  =  ( 𝑃  ∘  ℎ )  →  ( 𝐹 ‘ 𝑧 )  =  ( ( ( 1st   ↾  ( 𝐵  ×  𝐶 ) )  ∘  ℎ ) ‘ 𝑧 ) ) | 
						
							| 31 | 30 | 3ad2ant2 | ⊢ ( ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝐹  =  ( 𝑃  ∘  ℎ )  ∧  𝐺  =  ( 𝑄  ∘  ℎ ) )  →  ( 𝐹 ‘ 𝑧 )  =  ( ( ( 1st   ↾  ( 𝐵  ×  𝐶 ) )  ∘  ℎ ) ‘ 𝑧 ) ) | 
						
							| 32 | 31 | ad2antlr | ⊢ ( ( ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  ∧  ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝐹  =  ( 𝑃  ∘  ℎ )  ∧  𝐺  =  ( 𝑄  ∘  ℎ ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑧 )  =  ( ( ( 1st   ↾  ( 𝐵  ×  𝐶 ) )  ∘  ℎ ) ‘ 𝑧 ) ) | 
						
							| 33 |  | simpr1 | ⊢ ( ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  ∧  ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝐹  =  ( 𝑃  ∘  ℎ )  ∧  𝐺  =  ( 𝑄  ∘  ℎ ) ) )  →  ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 ) ) | 
						
							| 34 |  | fvco3 | ⊢ ( ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝑧  ∈  𝐴 )  →  ( ( ( 1st   ↾  ( 𝐵  ×  𝐶 ) )  ∘  ℎ ) ‘ 𝑧 )  =  ( ( 1st   ↾  ( 𝐵  ×  𝐶 ) ) ‘ ( ℎ ‘ 𝑧 ) ) ) | 
						
							| 35 | 33 34 | sylan | ⊢ ( ( ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  ∧  ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝐹  =  ( 𝑃  ∘  ℎ )  ∧  𝐺  =  ( 𝑄  ∘  ℎ ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( ( ( 1st   ↾  ( 𝐵  ×  𝐶 ) )  ∘  ℎ ) ‘ 𝑧 )  =  ( ( 1st   ↾  ( 𝐵  ×  𝐶 ) ) ‘ ( ℎ ‘ 𝑧 ) ) ) | 
						
							| 36 | 23 | 3ad2antl1 | ⊢ ( ( ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝐹  =  ( 𝑃  ∘  ℎ )  ∧  𝐺  =  ( 𝑄  ∘  ℎ ) )  ∧  𝑧  ∈  𝐴 )  →  ( ℎ ‘ 𝑧 )  ∈  ( 𝐵  ×  𝐶 ) ) | 
						
							| 37 | 36 | adantll | ⊢ ( ( ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  ∧  ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝐹  =  ( 𝑃  ∘  ℎ )  ∧  𝐺  =  ( 𝑄  ∘  ℎ ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( ℎ ‘ 𝑧 )  ∈  ( 𝐵  ×  𝐶 ) ) | 
						
							| 38 | 37 | fvresd | ⊢ ( ( ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  ∧  ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝐹  =  ( 𝑃  ∘  ℎ )  ∧  𝐺  =  ( 𝑄  ∘  ℎ ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( ( 1st   ↾  ( 𝐵  ×  𝐶 ) ) ‘ ( ℎ ‘ 𝑧 ) )  =  ( 1st  ‘ ( ℎ ‘ 𝑧 ) ) ) | 
						
							| 39 | 32 35 38 | 3eqtrrd | ⊢ ( ( ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  ∧  ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝐹  =  ( 𝑃  ∘  ℎ )  ∧  𝐺  =  ( 𝑄  ∘  ℎ ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( 1st  ‘ ( ℎ ‘ 𝑧 ) )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 40 |  | fveq1 | ⊢ ( 𝐺  =  ( 𝑄  ∘  ℎ )  →  ( 𝐺 ‘ 𝑧 )  =  ( ( 𝑄  ∘  ℎ ) ‘ 𝑧 ) ) | 
						
							| 41 | 2 | coeq1i | ⊢ ( 𝑄  ∘  ℎ )  =  ( ( 2nd   ↾  ( 𝐵  ×  𝐶 ) )  ∘  ℎ ) | 
						
							| 42 | 41 | fveq1i | ⊢ ( ( 𝑄  ∘  ℎ ) ‘ 𝑧 )  =  ( ( ( 2nd   ↾  ( 𝐵  ×  𝐶 ) )  ∘  ℎ ) ‘ 𝑧 ) | 
						
							| 43 | 40 42 | eqtrdi | ⊢ ( 𝐺  =  ( 𝑄  ∘  ℎ )  →  ( 𝐺 ‘ 𝑧 )  =  ( ( ( 2nd   ↾  ( 𝐵  ×  𝐶 ) )  ∘  ℎ ) ‘ 𝑧 ) ) | 
						
							| 44 | 43 | 3ad2ant3 | ⊢ ( ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝐹  =  ( 𝑃  ∘  ℎ )  ∧  𝐺  =  ( 𝑄  ∘  ℎ ) )  →  ( 𝐺 ‘ 𝑧 )  =  ( ( ( 2nd   ↾  ( 𝐵  ×  𝐶 ) )  ∘  ℎ ) ‘ 𝑧 ) ) | 
						
							| 45 | 44 | ad2antlr | ⊢ ( ( ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  ∧  ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝐹  =  ( 𝑃  ∘  ℎ )  ∧  𝐺  =  ( 𝑄  ∘  ℎ ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑧 )  =  ( ( ( 2nd   ↾  ( 𝐵  ×  𝐶 ) )  ∘  ℎ ) ‘ 𝑧 ) ) | 
						
							| 46 |  | fvco3 | ⊢ ( ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝑧  ∈  𝐴 )  →  ( ( ( 2nd   ↾  ( 𝐵  ×  𝐶 ) )  ∘  ℎ ) ‘ 𝑧 )  =  ( ( 2nd   ↾  ( 𝐵  ×  𝐶 ) ) ‘ ( ℎ ‘ 𝑧 ) ) ) | 
						
							| 47 | 33 46 | sylan | ⊢ ( ( ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  ∧  ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝐹  =  ( 𝑃  ∘  ℎ )  ∧  𝐺  =  ( 𝑄  ∘  ℎ ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( ( ( 2nd   ↾  ( 𝐵  ×  𝐶 ) )  ∘  ℎ ) ‘ 𝑧 )  =  ( ( 2nd   ↾  ( 𝐵  ×  𝐶 ) ) ‘ ( ℎ ‘ 𝑧 ) ) ) | 
						
							| 48 | 37 | fvresd | ⊢ ( ( ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  ∧  ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝐹  =  ( 𝑃  ∘  ℎ )  ∧  𝐺  =  ( 𝑄  ∘  ℎ ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( ( 2nd   ↾  ( 𝐵  ×  𝐶 ) ) ‘ ( ℎ ‘ 𝑧 ) )  =  ( 2nd  ‘ ( ℎ ‘ 𝑧 ) ) ) | 
						
							| 49 | 45 47 48 | 3eqtrrd | ⊢ ( ( ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  ∧  ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝐹  =  ( 𝑃  ∘  ℎ )  ∧  𝐺  =  ( 𝑄  ∘  ℎ ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( 2nd  ‘ ( ℎ ‘ 𝑧 ) )  =  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 50 |  | eqopi | ⊢ ( ( ( ℎ ‘ 𝑧 )  ∈  ( V  ×  V )  ∧  ( ( 1st  ‘ ( ℎ ‘ 𝑧 ) )  =  ( 𝐹 ‘ 𝑧 )  ∧  ( 2nd  ‘ ( ℎ ‘ 𝑧 ) )  =  ( 𝐺 ‘ 𝑧 ) ) )  →  ( ℎ ‘ 𝑧 )  =  〈 ( 𝐹 ‘ 𝑧 ) ,  ( 𝐺 ‘ 𝑧 ) 〉 ) | 
						
							| 51 | 26 39 49 50 | syl12anc | ⊢ ( ( ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  ∧  ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝐹  =  ( 𝑃  ∘  ℎ )  ∧  𝐺  =  ( 𝑄  ∘  ℎ ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( ℎ ‘ 𝑧 )  =  〈 ( 𝐹 ‘ 𝑧 ) ,  ( 𝐺 ‘ 𝑧 ) 〉 ) | 
						
							| 52 |  | fveq2 | ⊢ ( 𝑥  =  𝑧  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 53 |  | fveq2 | ⊢ ( 𝑥  =  𝑧  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 54 | 52 53 | opeq12d | ⊢ ( 𝑥  =  𝑧  →  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉  =  〈 ( 𝐹 ‘ 𝑧 ) ,  ( 𝐺 ‘ 𝑧 ) 〉 ) | 
						
							| 55 |  | opex | ⊢ 〈 ( 𝐹 ‘ 𝑧 ) ,  ( 𝐺 ‘ 𝑧 ) 〉  ∈  V | 
						
							| 56 | 54 17 55 | fvmpt | ⊢ ( 𝑧  ∈  𝐴  →  ( ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 )  =  〈 ( 𝐹 ‘ 𝑧 ) ,  ( 𝐺 ‘ 𝑧 ) 〉 ) | 
						
							| 57 | 56 | adantl | ⊢ ( ( ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  ∧  ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝐹  =  ( 𝑃  ∘  ℎ )  ∧  𝐺  =  ( 𝑄  ∘  ℎ ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 )  =  〈 ( 𝐹 ‘ 𝑧 ) ,  ( 𝐺 ‘ 𝑧 ) 〉 ) | 
						
							| 58 | 51 57 | eqtr4d | ⊢ ( ( ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  ∧  ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝐹  =  ( 𝑃  ∘  ℎ )  ∧  𝐺  =  ( 𝑄  ∘  ℎ ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( ℎ ‘ 𝑧 )  =  ( ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) ) | 
						
							| 59 | 9 21 58 | eqfnfvd | ⊢ ( ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  ∧  ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝐹  =  ( 𝑃  ∘  ℎ )  ∧  𝐺  =  ( 𝑄  ∘  ℎ ) ) )  →  ℎ  =  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ) | 
						
							| 60 | 59 | ex | ⊢ ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  →  ( ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝐹  =  ( 𝑃  ∘  ℎ )  ∧  𝐺  =  ( 𝑄  ∘  ℎ ) )  →  ℎ  =  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) | 
						
							| 61 |  | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐹  Fn  𝐴 ) | 
						
							| 62 | 61 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  →  𝐹  Fn  𝐴 ) | 
						
							| 63 |  | fo1st | ⊢ 1st  : V –onto→ V | 
						
							| 64 |  | fofn | ⊢ ( 1st  : V –onto→ V  →  1st   Fn  V ) | 
						
							| 65 | 63 64 | ax-mp | ⊢ 1st   Fn  V | 
						
							| 66 |  | ssv | ⊢ ( 𝐵  ×  𝐶 )  ⊆  V | 
						
							| 67 |  | fnssres | ⊢ ( ( 1st   Fn  V  ∧  ( 𝐵  ×  𝐶 )  ⊆  V )  →  ( 1st   ↾  ( 𝐵  ×  𝐶 ) )  Fn  ( 𝐵  ×  𝐶 ) ) | 
						
							| 68 | 65 66 67 | mp2an | ⊢ ( 1st   ↾  ( 𝐵  ×  𝐶 ) )  Fn  ( 𝐵  ×  𝐶 ) | 
						
							| 69 | 19 | frnd | ⊢ ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  →  ran  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 )  ⊆  ( 𝐵  ×  𝐶 ) ) | 
						
							| 70 |  | fnco | ⊢ ( ( ( 1st   ↾  ( 𝐵  ×  𝐶 ) )  Fn  ( 𝐵  ×  𝐶 )  ∧  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 )  Fn  𝐴  ∧  ran  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 )  ⊆  ( 𝐵  ×  𝐶 ) )  →  ( ( 1st   ↾  ( 𝐵  ×  𝐶 ) )  ∘  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) )  Fn  𝐴 ) | 
						
							| 71 | 68 20 69 70 | mp3an2i | ⊢ ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  →  ( ( 1st   ↾  ( 𝐵  ×  𝐶 ) )  ∘  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) )  Fn  𝐴 ) | 
						
							| 72 |  | fvco3 | ⊢ ( ( ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝑧  ∈  𝐴 )  →  ( ( ( 1st   ↾  ( 𝐵  ×  𝐶 ) )  ∘  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ) ‘ 𝑧 )  =  ( ( 1st   ↾  ( 𝐵  ×  𝐶 ) ) ‘ ( ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) ) ) | 
						
							| 73 | 19 72 | sylan | ⊢ ( ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  ∧  𝑧  ∈  𝐴 )  →  ( ( ( 1st   ↾  ( 𝐵  ×  𝐶 ) )  ∘  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ) ‘ 𝑧 )  =  ( ( 1st   ↾  ( 𝐵  ×  𝐶 ) ) ‘ ( ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) ) ) | 
						
							| 74 | 56 | adantl | ⊢ ( ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  ∧  𝑧  ∈  𝐴 )  →  ( ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 )  =  〈 ( 𝐹 ‘ 𝑧 ) ,  ( 𝐺 ‘ 𝑧 ) 〉 ) | 
						
							| 75 | 74 | fveq2d | ⊢ ( ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  ∧  𝑧  ∈  𝐴 )  →  ( ( 1st   ↾  ( 𝐵  ×  𝐶 ) ) ‘ ( ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) )  =  ( ( 1st   ↾  ( 𝐵  ×  𝐶 ) ) ‘ 〈 ( 𝐹 ‘ 𝑧 ) ,  ( 𝐺 ‘ 𝑧 ) 〉 ) ) | 
						
							| 76 |  | ffvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑧  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑧 )  ∈  𝐵 ) | 
						
							| 77 |  | ffvelcdm | ⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐶  ∧  𝑧  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑧 )  ∈  𝐶 ) | 
						
							| 78 |  | opelxpi | ⊢ ( ( ( 𝐹 ‘ 𝑧 )  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑧 )  ∈  𝐶 )  →  〈 ( 𝐹 ‘ 𝑧 ) ,  ( 𝐺 ‘ 𝑧 ) 〉  ∈  ( 𝐵  ×  𝐶 ) ) | 
						
							| 79 | 76 77 78 | syl2an | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐺 : 𝐴 ⟶ 𝐶  ∧  𝑧  ∈  𝐴 ) )  →  〈 ( 𝐹 ‘ 𝑧 ) ,  ( 𝐺 ‘ 𝑧 ) 〉  ∈  ( 𝐵  ×  𝐶 ) ) | 
						
							| 80 | 79 | anandirs | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  ∧  𝑧  ∈  𝐴 )  →  〈 ( 𝐹 ‘ 𝑧 ) ,  ( 𝐺 ‘ 𝑧 ) 〉  ∈  ( 𝐵  ×  𝐶 ) ) | 
						
							| 81 | 80 | 3adantl1 | ⊢ ( ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  ∧  𝑧  ∈  𝐴 )  →  〈 ( 𝐹 ‘ 𝑧 ) ,  ( 𝐺 ‘ 𝑧 ) 〉  ∈  ( 𝐵  ×  𝐶 ) ) | 
						
							| 82 | 81 | fvresd | ⊢ ( ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  ∧  𝑧  ∈  𝐴 )  →  ( ( 1st   ↾  ( 𝐵  ×  𝐶 ) ) ‘ 〈 ( 𝐹 ‘ 𝑧 ) ,  ( 𝐺 ‘ 𝑧 ) 〉 )  =  ( 1st  ‘ 〈 ( 𝐹 ‘ 𝑧 ) ,  ( 𝐺 ‘ 𝑧 ) 〉 ) ) | 
						
							| 83 |  | fvex | ⊢ ( 𝐹 ‘ 𝑧 )  ∈  V | 
						
							| 84 |  | fvex | ⊢ ( 𝐺 ‘ 𝑧 )  ∈  V | 
						
							| 85 | 83 84 | op1st | ⊢ ( 1st  ‘ 〈 ( 𝐹 ‘ 𝑧 ) ,  ( 𝐺 ‘ 𝑧 ) 〉 )  =  ( 𝐹 ‘ 𝑧 ) | 
						
							| 86 | 82 85 | eqtrdi | ⊢ ( ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  ∧  𝑧  ∈  𝐴 )  →  ( ( 1st   ↾  ( 𝐵  ×  𝐶 ) ) ‘ 〈 ( 𝐹 ‘ 𝑧 ) ,  ( 𝐺 ‘ 𝑧 ) 〉 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 87 | 73 75 86 | 3eqtrrd | ⊢ ( ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  ∧  𝑧  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑧 )  =  ( ( ( 1st   ↾  ( 𝐵  ×  𝐶 ) )  ∘  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ) ‘ 𝑧 ) ) | 
						
							| 88 | 62 71 87 | eqfnfvd | ⊢ ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  →  𝐹  =  ( ( 1st   ↾  ( 𝐵  ×  𝐶 ) )  ∘  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) | 
						
							| 89 | 1 | coeq1i | ⊢ ( 𝑃  ∘  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) )  =  ( ( 1st   ↾  ( 𝐵  ×  𝐶 ) )  ∘  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ) | 
						
							| 90 | 88 89 | eqtr4di | ⊢ ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  →  𝐹  =  ( 𝑃  ∘  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) | 
						
							| 91 |  | ffn | ⊢ ( 𝐺 : 𝐴 ⟶ 𝐶  →  𝐺  Fn  𝐴 ) | 
						
							| 92 | 91 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  →  𝐺  Fn  𝐴 ) | 
						
							| 93 |  | fo2nd | ⊢ 2nd  : V –onto→ V | 
						
							| 94 |  | fofn | ⊢ ( 2nd  : V –onto→ V  →  2nd   Fn  V ) | 
						
							| 95 | 93 94 | ax-mp | ⊢ 2nd   Fn  V | 
						
							| 96 |  | fnssres | ⊢ ( ( 2nd   Fn  V  ∧  ( 𝐵  ×  𝐶 )  ⊆  V )  →  ( 2nd   ↾  ( 𝐵  ×  𝐶 ) )  Fn  ( 𝐵  ×  𝐶 ) ) | 
						
							| 97 | 95 66 96 | mp2an | ⊢ ( 2nd   ↾  ( 𝐵  ×  𝐶 ) )  Fn  ( 𝐵  ×  𝐶 ) | 
						
							| 98 |  | fnco | ⊢ ( ( ( 2nd   ↾  ( 𝐵  ×  𝐶 ) )  Fn  ( 𝐵  ×  𝐶 )  ∧  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 )  Fn  𝐴  ∧  ran  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 )  ⊆  ( 𝐵  ×  𝐶 ) )  →  ( ( 2nd   ↾  ( 𝐵  ×  𝐶 ) )  ∘  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) )  Fn  𝐴 ) | 
						
							| 99 | 97 20 69 98 | mp3an2i | ⊢ ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  →  ( ( 2nd   ↾  ( 𝐵  ×  𝐶 ) )  ∘  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) )  Fn  𝐴 ) | 
						
							| 100 |  | fvco3 | ⊢ ( ( ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝑧  ∈  𝐴 )  →  ( ( ( 2nd   ↾  ( 𝐵  ×  𝐶 ) )  ∘  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ) ‘ 𝑧 )  =  ( ( 2nd   ↾  ( 𝐵  ×  𝐶 ) ) ‘ ( ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) ) ) | 
						
							| 101 | 19 100 | sylan | ⊢ ( ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  ∧  𝑧  ∈  𝐴 )  →  ( ( ( 2nd   ↾  ( 𝐵  ×  𝐶 ) )  ∘  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ) ‘ 𝑧 )  =  ( ( 2nd   ↾  ( 𝐵  ×  𝐶 ) ) ‘ ( ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) ) ) | 
						
							| 102 | 74 | fveq2d | ⊢ ( ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  ∧  𝑧  ∈  𝐴 )  →  ( ( 2nd   ↾  ( 𝐵  ×  𝐶 ) ) ‘ ( ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) )  =  ( ( 2nd   ↾  ( 𝐵  ×  𝐶 ) ) ‘ 〈 ( 𝐹 ‘ 𝑧 ) ,  ( 𝐺 ‘ 𝑧 ) 〉 ) ) | 
						
							| 103 | 81 | fvresd | ⊢ ( ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  ∧  𝑧  ∈  𝐴 )  →  ( ( 2nd   ↾  ( 𝐵  ×  𝐶 ) ) ‘ 〈 ( 𝐹 ‘ 𝑧 ) ,  ( 𝐺 ‘ 𝑧 ) 〉 )  =  ( 2nd  ‘ 〈 ( 𝐹 ‘ 𝑧 ) ,  ( 𝐺 ‘ 𝑧 ) 〉 ) ) | 
						
							| 104 | 83 84 | op2nd | ⊢ ( 2nd  ‘ 〈 ( 𝐹 ‘ 𝑧 ) ,  ( 𝐺 ‘ 𝑧 ) 〉 )  =  ( 𝐺 ‘ 𝑧 ) | 
						
							| 105 | 103 104 | eqtrdi | ⊢ ( ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  ∧  𝑧  ∈  𝐴 )  →  ( ( 2nd   ↾  ( 𝐵  ×  𝐶 ) ) ‘ 〈 ( 𝐹 ‘ 𝑧 ) ,  ( 𝐺 ‘ 𝑧 ) 〉 )  =  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 106 | 101 102 105 | 3eqtrrd | ⊢ ( ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  ∧  𝑧  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑧 )  =  ( ( ( 2nd   ↾  ( 𝐵  ×  𝐶 ) )  ∘  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ) ‘ 𝑧 ) ) | 
						
							| 107 | 92 99 106 | eqfnfvd | ⊢ ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  →  𝐺  =  ( ( 2nd   ↾  ( 𝐵  ×  𝐶 ) )  ∘  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) | 
						
							| 108 | 2 | coeq1i | ⊢ ( 𝑄  ∘  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) )  =  ( ( 2nd   ↾  ( 𝐵  ×  𝐶 ) )  ∘  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ) | 
						
							| 109 | 107 108 | eqtr4di | ⊢ ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  →  𝐺  =  ( 𝑄  ∘  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) | 
						
							| 110 | 19 90 109 | 3jca | ⊢ ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  →  ( ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝐹  =  ( 𝑃  ∘  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) )  ∧  𝐺  =  ( 𝑄  ∘  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) ) | 
						
							| 111 |  | feq1 | ⊢ ( ℎ  =  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 )  →  ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ↔  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) : 𝐴 ⟶ ( 𝐵  ×  𝐶 ) ) ) | 
						
							| 112 |  | coeq2 | ⊢ ( ℎ  =  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 )  →  ( 𝑃  ∘  ℎ )  =  ( 𝑃  ∘  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) | 
						
							| 113 | 112 | eqeq2d | ⊢ ( ℎ  =  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 )  →  ( 𝐹  =  ( 𝑃  ∘  ℎ )  ↔  𝐹  =  ( 𝑃  ∘  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) ) | 
						
							| 114 |  | coeq2 | ⊢ ( ℎ  =  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 )  →  ( 𝑄  ∘  ℎ )  =  ( 𝑄  ∘  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) | 
						
							| 115 | 114 | eqeq2d | ⊢ ( ℎ  =  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 )  →  ( 𝐺  =  ( 𝑄  ∘  ℎ )  ↔  𝐺  =  ( 𝑄  ∘  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) ) | 
						
							| 116 | 111 113 115 | 3anbi123d | ⊢ ( ℎ  =  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 )  →  ( ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝐹  =  ( 𝑃  ∘  ℎ )  ∧  𝐺  =  ( 𝑄  ∘  ℎ ) )  ↔  ( ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝐹  =  ( 𝑃  ∘  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) )  ∧  𝐺  =  ( 𝑄  ∘  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) ) ) | 
						
							| 117 | 110 116 | syl5ibrcom | ⊢ ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  →  ( ℎ  =  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 )  →  ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝐹  =  ( 𝑃  ∘  ℎ )  ∧  𝐺  =  ( 𝑄  ∘  ℎ ) ) ) ) | 
						
							| 118 | 60 117 | impbid | ⊢ ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  →  ( ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝐹  =  ( 𝑃  ∘  ℎ )  ∧  𝐺  =  ( 𝑄  ∘  ℎ ) )  ↔  ℎ  =  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) | 
						
							| 119 | 118 | eubidv | ⊢ ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  →  ( ∃! ℎ ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝐹  =  ( 𝑃  ∘  ℎ )  ∧  𝐺  =  ( 𝑄  ∘  ℎ ) )  ↔  ∃! ℎ ℎ  =  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) | 
						
							| 120 | 6 119 | mpbird | ⊢ ( ( 𝐴  ∈  𝐷  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐶 )  →  ∃! ℎ ( ℎ : 𝐴 ⟶ ( 𝐵  ×  𝐶 )  ∧  𝐹  =  ( 𝑃  ∘  ℎ )  ∧  𝐺  =  ( 𝑄  ∘  ℎ ) ) ) |