Step |
Hyp |
Ref |
Expression |
1 |
|
upxp.1 |
⊢ 𝑃 = ( 1st ↾ ( 𝐵 × 𝐶 ) ) |
2 |
|
upxp.2 |
⊢ 𝑄 = ( 2nd ↾ ( 𝐵 × 𝐶 ) ) |
3 |
|
mptexg |
⊢ ( 𝐴 ∈ 𝐷 → ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ∈ V ) |
4 |
|
eueq |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ∈ V ↔ ∃! ℎ ℎ = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) |
5 |
3 4
|
sylib |
⊢ ( 𝐴 ∈ 𝐷 → ∃! ℎ ℎ = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → ∃! ℎ ℎ = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) |
7 |
|
ffn |
⊢ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) → ℎ Fn 𝐴 ) |
8 |
7
|
3ad2ant1 |
⊢ ( ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) → ℎ Fn 𝐴 ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) → ℎ Fn 𝐴 ) |
10 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
11 |
|
ffvelrn |
⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐶 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 ) |
12 |
|
opelxpi |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( 𝐵 × 𝐶 ) ) |
13 |
10 11 12
|
syl2an |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐺 : 𝐴 ⟶ 𝐶 ∧ 𝑥 ∈ 𝐴 ) ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( 𝐵 × 𝐶 ) ) |
14 |
13
|
anandirs |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( 𝐵 × 𝐶 ) ) |
15 |
14
|
ralrimiva |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → ∀ 𝑥 ∈ 𝐴 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( 𝐵 × 𝐶 ) ) |
16 |
15
|
3adant1 |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → ∀ 𝑥 ∈ 𝐴 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( 𝐵 × 𝐶 ) ) |
17 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) |
18 |
17
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝐴 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( 𝐵 × 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ) |
19 |
16 18
|
sylib |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ) |
20 |
19
|
ffnd |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) Fn 𝐴 ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) → ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) Fn 𝐴 ) |
22 |
|
xpss |
⊢ ( 𝐵 × 𝐶 ) ⊆ ( V × V ) |
23 |
|
ffvelrn |
⊢ ( ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ℎ ‘ 𝑧 ) ∈ ( 𝐵 × 𝐶 ) ) |
24 |
22 23
|
sselid |
⊢ ( ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ℎ ‘ 𝑧 ) ∈ ( V × V ) ) |
25 |
24
|
3ad2antl1 |
⊢ ( ( ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ℎ ‘ 𝑧 ) ∈ ( V × V ) ) |
26 |
25
|
adantll |
⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ℎ ‘ 𝑧 ) ∈ ( V × V ) ) |
27 |
|
fveq1 |
⊢ ( 𝐹 = ( 𝑃 ∘ ℎ ) → ( 𝐹 ‘ 𝑧 ) = ( ( 𝑃 ∘ ℎ ) ‘ 𝑧 ) ) |
28 |
1
|
coeq1i |
⊢ ( 𝑃 ∘ ℎ ) = ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ∘ ℎ ) |
29 |
28
|
fveq1i |
⊢ ( ( 𝑃 ∘ ℎ ) ‘ 𝑧 ) = ( ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ∘ ℎ ) ‘ 𝑧 ) |
30 |
27 29
|
eqtrdi |
⊢ ( 𝐹 = ( 𝑃 ∘ ℎ ) → ( 𝐹 ‘ 𝑧 ) = ( ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ∘ ℎ ) ‘ 𝑧 ) ) |
31 |
30
|
3ad2ant2 |
⊢ ( ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) → ( 𝐹 ‘ 𝑧 ) = ( ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ∘ ℎ ) ‘ 𝑧 ) ) |
32 |
31
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) = ( ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ∘ ℎ ) ‘ 𝑧 ) ) |
33 |
|
simpr1 |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) → ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ) |
34 |
|
fvco3 |
⊢ ( ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ∘ ℎ ) ‘ 𝑧 ) = ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ‘ ( ℎ ‘ 𝑧 ) ) ) |
35 |
33 34
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ∘ ℎ ) ‘ 𝑧 ) = ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ‘ ( ℎ ‘ 𝑧 ) ) ) |
36 |
23
|
3ad2antl1 |
⊢ ( ( ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ℎ ‘ 𝑧 ) ∈ ( 𝐵 × 𝐶 ) ) |
37 |
36
|
adantll |
⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ℎ ‘ 𝑧 ) ∈ ( 𝐵 × 𝐶 ) ) |
38 |
37
|
fvresd |
⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ‘ ( ℎ ‘ 𝑧 ) ) = ( 1st ‘ ( ℎ ‘ 𝑧 ) ) ) |
39 |
32 35 38
|
3eqtrrd |
⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 1st ‘ ( ℎ ‘ 𝑧 ) ) = ( 𝐹 ‘ 𝑧 ) ) |
40 |
|
fveq1 |
⊢ ( 𝐺 = ( 𝑄 ∘ ℎ ) → ( 𝐺 ‘ 𝑧 ) = ( ( 𝑄 ∘ ℎ ) ‘ 𝑧 ) ) |
41 |
2
|
coeq1i |
⊢ ( 𝑄 ∘ ℎ ) = ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ∘ ℎ ) |
42 |
41
|
fveq1i |
⊢ ( ( 𝑄 ∘ ℎ ) ‘ 𝑧 ) = ( ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ∘ ℎ ) ‘ 𝑧 ) |
43 |
40 42
|
eqtrdi |
⊢ ( 𝐺 = ( 𝑄 ∘ ℎ ) → ( 𝐺 ‘ 𝑧 ) = ( ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ∘ ℎ ) ‘ 𝑧 ) ) |
44 |
43
|
3ad2ant3 |
⊢ ( ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) → ( 𝐺 ‘ 𝑧 ) = ( ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ∘ ℎ ) ‘ 𝑧 ) ) |
45 |
44
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑧 ) = ( ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ∘ ℎ ) ‘ 𝑧 ) ) |
46 |
|
fvco3 |
⊢ ( ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ∘ ℎ ) ‘ 𝑧 ) = ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ‘ ( ℎ ‘ 𝑧 ) ) ) |
47 |
33 46
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ∘ ℎ ) ‘ 𝑧 ) = ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ‘ ( ℎ ‘ 𝑧 ) ) ) |
48 |
37
|
fvresd |
⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ‘ ( ℎ ‘ 𝑧 ) ) = ( 2nd ‘ ( ℎ ‘ 𝑧 ) ) ) |
49 |
45 47 48
|
3eqtrrd |
⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 2nd ‘ ( ℎ ‘ 𝑧 ) ) = ( 𝐺 ‘ 𝑧 ) ) |
50 |
|
eqopi |
⊢ ( ( ( ℎ ‘ 𝑧 ) ∈ ( V × V ) ∧ ( ( 1st ‘ ( ℎ ‘ 𝑧 ) ) = ( 𝐹 ‘ 𝑧 ) ∧ ( 2nd ‘ ( ℎ ‘ 𝑧 ) ) = ( 𝐺 ‘ 𝑧 ) ) ) → ( ℎ ‘ 𝑧 ) = 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) |
51 |
26 39 49 50
|
syl12anc |
⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ℎ ‘ 𝑧 ) = 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) |
52 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) |
53 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑧 ) ) |
54 |
52 53
|
opeq12d |
⊢ ( 𝑥 = 𝑧 → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 = 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) |
55 |
|
opex |
⊢ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ∈ V |
56 |
54 17 55
|
fvmpt |
⊢ ( 𝑧 ∈ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) = 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) |
57 |
56
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) = 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) |
58 |
51 57
|
eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ℎ ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) ) |
59 |
9 21 58
|
eqfnfvd |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) → ℎ = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) |
60 |
59
|
ex |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → ( ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) → ℎ = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) |
61 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) |
62 |
61
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → 𝐹 Fn 𝐴 ) |
63 |
|
fo1st |
⊢ 1st : V –onto→ V |
64 |
|
fofn |
⊢ ( 1st : V –onto→ V → 1st Fn V ) |
65 |
63 64
|
ax-mp |
⊢ 1st Fn V |
66 |
|
ssv |
⊢ ( 𝐵 × 𝐶 ) ⊆ V |
67 |
|
fnssres |
⊢ ( ( 1st Fn V ∧ ( 𝐵 × 𝐶 ) ⊆ V ) → ( 1st ↾ ( 𝐵 × 𝐶 ) ) Fn ( 𝐵 × 𝐶 ) ) |
68 |
65 66 67
|
mp2an |
⊢ ( 1st ↾ ( 𝐵 × 𝐶 ) ) Fn ( 𝐵 × 𝐶 ) |
69 |
19
|
frnd |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → ran ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ⊆ ( 𝐵 × 𝐶 ) ) |
70 |
|
fnco |
⊢ ( ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) Fn ( 𝐵 × 𝐶 ) ∧ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) Fn 𝐴 ∧ ran ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ⊆ ( 𝐵 × 𝐶 ) ) → ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) Fn 𝐴 ) |
71 |
68 20 69 70
|
mp3an2i |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) Fn 𝐴 ) |
72 |
|
fvco3 |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ‘ 𝑧 ) = ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ‘ ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) ) ) |
73 |
19 72
|
sylan |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ‘ 𝑧 ) = ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ‘ ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) ) ) |
74 |
56
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) = 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) |
75 |
74
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ‘ ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) ) = ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) ) |
76 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) |
77 |
|
ffvelrn |
⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐶 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝐶 ) |
78 |
|
opelxpi |
⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑧 ) ∈ 𝐶 ) → 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ∈ ( 𝐵 × 𝐶 ) ) |
79 |
76 77 78
|
syl2an |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝐺 : 𝐴 ⟶ 𝐶 ∧ 𝑧 ∈ 𝐴 ) ) → 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ∈ ( 𝐵 × 𝐶 ) ) |
80 |
79
|
anandirs |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ∈ ( 𝐵 × 𝐶 ) ) |
81 |
80
|
3adantl1 |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ∈ ( 𝐵 × 𝐶 ) ) |
82 |
81
|
fvresd |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) = ( 1st ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) ) |
83 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑧 ) ∈ V |
84 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑧 ) ∈ V |
85 |
83 84
|
op1st |
⊢ ( 1st ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) = ( 𝐹 ‘ 𝑧 ) |
86 |
82 85
|
eqtrdi |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) = ( 𝐹 ‘ 𝑧 ) ) |
87 |
73 75 86
|
3eqtrrd |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) = ( ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ‘ 𝑧 ) ) |
88 |
62 71 87
|
eqfnfvd |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → 𝐹 = ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) |
89 |
1
|
coeq1i |
⊢ ( 𝑃 ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) = ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) |
90 |
88 89
|
eqtr4di |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → 𝐹 = ( 𝑃 ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) |
91 |
|
ffn |
⊢ ( 𝐺 : 𝐴 ⟶ 𝐶 → 𝐺 Fn 𝐴 ) |
92 |
91
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → 𝐺 Fn 𝐴 ) |
93 |
|
fo2nd |
⊢ 2nd : V –onto→ V |
94 |
|
fofn |
⊢ ( 2nd : V –onto→ V → 2nd Fn V ) |
95 |
93 94
|
ax-mp |
⊢ 2nd Fn V |
96 |
|
fnssres |
⊢ ( ( 2nd Fn V ∧ ( 𝐵 × 𝐶 ) ⊆ V ) → ( 2nd ↾ ( 𝐵 × 𝐶 ) ) Fn ( 𝐵 × 𝐶 ) ) |
97 |
95 66 96
|
mp2an |
⊢ ( 2nd ↾ ( 𝐵 × 𝐶 ) ) Fn ( 𝐵 × 𝐶 ) |
98 |
|
fnco |
⊢ ( ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) Fn ( 𝐵 × 𝐶 ) ∧ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) Fn 𝐴 ∧ ran ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ⊆ ( 𝐵 × 𝐶 ) ) → ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) Fn 𝐴 ) |
99 |
97 20 69 98
|
mp3an2i |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) Fn 𝐴 ) |
100 |
|
fvco3 |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ‘ 𝑧 ) = ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ‘ ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) ) ) |
101 |
19 100
|
sylan |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ‘ 𝑧 ) = ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ‘ ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) ) ) |
102 |
74
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ‘ ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) ) = ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) ) |
103 |
81
|
fvresd |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) = ( 2nd ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) ) |
104 |
83 84
|
op2nd |
⊢ ( 2nd ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) = ( 𝐺 ‘ 𝑧 ) |
105 |
103 104
|
eqtrdi |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) = ( 𝐺 ‘ 𝑧 ) ) |
106 |
101 102 105
|
3eqtrrd |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑧 ) = ( ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ‘ 𝑧 ) ) |
107 |
92 99 106
|
eqfnfvd |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → 𝐺 = ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) |
108 |
2
|
coeq1i |
⊢ ( 𝑄 ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) = ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) |
109 |
107 108
|
eqtr4di |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → 𝐺 = ( 𝑄 ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) |
110 |
19 90 109
|
3jca |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ∧ 𝐺 = ( 𝑄 ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) ) |
111 |
|
feq1 |
⊢ ( ℎ = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) → ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ) ) |
112 |
|
coeq2 |
⊢ ( ℎ = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) → ( 𝑃 ∘ ℎ ) = ( 𝑃 ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) |
113 |
112
|
eqeq2d |
⊢ ( ℎ = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) → ( 𝐹 = ( 𝑃 ∘ ℎ ) ↔ 𝐹 = ( 𝑃 ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) ) |
114 |
|
coeq2 |
⊢ ( ℎ = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) → ( 𝑄 ∘ ℎ ) = ( 𝑄 ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) |
115 |
114
|
eqeq2d |
⊢ ( ℎ = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) → ( 𝐺 = ( 𝑄 ∘ ℎ ) ↔ 𝐺 = ( 𝑄 ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) ) |
116 |
111 113 115
|
3anbi123d |
⊢ ( ℎ = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) → ( ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ↔ ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ∧ 𝐺 = ( 𝑄 ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) ) ) |
117 |
110 116
|
syl5ibrcom |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → ( ℎ = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) → ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ) |
118 |
60 117
|
impbid |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → ( ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ↔ ℎ = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) |
119 |
118
|
eubidv |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → ( ∃! ℎ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ↔ ∃! ℎ ℎ = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) |
120 |
6 119
|
mpbird |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → ∃! ℎ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) |