Database GRAPH THEORY Undirected graphs Examples for graphs usgr0e  
				
		 
		
			
		 
		Description:   The empty graph, with vertices but no edges, is a simple graph.
       (Contributed by Alexander van der Vekens , 10-Aug-2017)   (Revised by AV , 16-Oct-2020)   (Proof shortened by AV , 25-Nov-2020) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						usgr0e.g ⊢  ( 𝜑   →  𝐺   ∈  𝑊  )  
					
						usgr0e.e ⊢  ( 𝜑   →  ( iEdg ‘ 𝐺  )  =  ∅ )  
				
					Assertion 
					usgr0e ⊢   ( 𝜑   →  𝐺   ∈  USGraph )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							usgr0e.g ⊢  ( 𝜑   →  𝐺   ∈  𝑊  )  
						
							2 
								
							 
							usgr0e.e ⊢  ( 𝜑   →  ( iEdg ‘ 𝐺  )  =  ∅ )  
						
							3 
								2 
							 
							f10d ⊢  ( 𝜑   →  ( iEdg ‘ 𝐺  ) : dom  ( iEdg ‘ 𝐺  ) –1-1 → { 𝑥   ∈  ( 𝒫  ( Vtx ‘ 𝐺  )  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥  )  =  2 } )  
						
							4 
								
							 
							eqid ⊢  ( Vtx ‘ 𝐺  )  =  ( Vtx ‘ 𝐺  )  
						
							5 
								
							 
							eqid ⊢  ( iEdg ‘ 𝐺  )  =  ( iEdg ‘ 𝐺  )  
						
							6 
								4  5 
							 
							isusgr ⊢  ( 𝐺   ∈  𝑊   →  ( 𝐺   ∈  USGraph  ↔  ( iEdg ‘ 𝐺  ) : dom  ( iEdg ‘ 𝐺  ) –1-1 → { 𝑥   ∈  ( 𝒫  ( Vtx ‘ 𝐺  )  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥  )  =  2 } ) )  
						
							7 
								1  6 
							 
							syl ⊢  ( 𝜑   →  ( 𝐺   ∈  USGraph  ↔  ( iEdg ‘ 𝐺  ) : dom  ( iEdg ‘ 𝐺  ) –1-1 → { 𝑥   ∈  ( 𝒫  ( Vtx ‘ 𝐺  )  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥  )  =  2 } ) )  
						
							8 
								3  7 
							 
							mpbird ⊢  ( 𝜑   →  𝐺   ∈  USGraph )