| Step | Hyp | Ref | Expression | 
						
							| 1 |  | usgruhgr | ⊢ ( 𝐺  ∈  USGraph  →  𝐺  ∈  UHGraph ) | 
						
							| 2 |  | uhgr0vb | ⊢ ( ( 𝐺  ∈  𝑊  ∧  ( Vtx ‘ 𝐺 )  =  ∅ )  →  ( 𝐺  ∈  UHGraph  ↔  ( iEdg ‘ 𝐺 )  =  ∅ ) ) | 
						
							| 3 | 1 2 | imbitrid | ⊢ ( ( 𝐺  ∈  𝑊  ∧  ( Vtx ‘ 𝐺 )  =  ∅ )  →  ( 𝐺  ∈  USGraph  →  ( iEdg ‘ 𝐺 )  =  ∅ ) ) | 
						
							| 4 |  | simpl | ⊢ ( ( 𝐺  ∈  𝑊  ∧  ( iEdg ‘ 𝐺 )  =  ∅ )  →  𝐺  ∈  𝑊 ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝐺  ∈  𝑊  ∧  ( iEdg ‘ 𝐺 )  =  ∅ )  →  ( iEdg ‘ 𝐺 )  =  ∅ ) | 
						
							| 6 | 4 5 | usgr0e | ⊢ ( ( 𝐺  ∈  𝑊  ∧  ( iEdg ‘ 𝐺 )  =  ∅ )  →  𝐺  ∈  USGraph ) | 
						
							| 7 | 6 | ex | ⊢ ( 𝐺  ∈  𝑊  →  ( ( iEdg ‘ 𝐺 )  =  ∅  →  𝐺  ∈  USGraph ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝐺  ∈  𝑊  ∧  ( Vtx ‘ 𝐺 )  =  ∅ )  →  ( ( iEdg ‘ 𝐺 )  =  ∅  →  𝐺  ∈  USGraph ) ) | 
						
							| 9 | 3 8 | impbid | ⊢ ( ( 𝐺  ∈  𝑊  ∧  ( Vtx ‘ 𝐺 )  =  ∅ )  →  ( 𝐺  ∈  USGraph  ↔  ( iEdg ‘ 𝐺 )  =  ∅ ) ) |