Step |
Hyp |
Ref |
Expression |
1 |
|
uspgr1e.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
uspgr1e.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
3 |
|
uspgr1e.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
4 |
|
uspgr1e.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
5 |
|
uspgr1e.e |
⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) |
6 |
|
usgr1e.e |
⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) |
7 |
1 2 3 4 5
|
uspgr1e |
⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) |
8 |
|
hashprg |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐵 ≠ 𝐶 ↔ ( ♯ ‘ { 𝐵 , 𝐶 } ) = 2 ) ) |
9 |
3 4 8
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ≠ 𝐶 ↔ ( ♯ ‘ { 𝐵 , 𝐶 } ) = 2 ) ) |
10 |
6 9
|
mpbid |
⊢ ( 𝜑 → ( ♯ ‘ { 𝐵 , 𝐶 } ) = 2 ) |
11 |
|
prex |
⊢ { 𝐵 , 𝐶 } ∈ V |
12 |
|
fveqeq2 |
⊢ ( 𝑥 = { 𝐵 , 𝐶 } → ( ( ♯ ‘ 𝑥 ) = 2 ↔ ( ♯ ‘ { 𝐵 , 𝐶 } ) = 2 ) ) |
13 |
11 12
|
ralsn |
⊢ ( ∀ 𝑥 ∈ { { 𝐵 , 𝐶 } } ( ♯ ‘ 𝑥 ) = 2 ↔ ( ♯ ‘ { 𝐵 , 𝐶 } ) = 2 ) |
14 |
10 13
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ { { 𝐵 , 𝐶 } } ( ♯ ‘ 𝑥 ) = 2 ) |
15 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
16 |
15
|
a1i |
⊢ ( 𝜑 → ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ) |
17 |
5
|
rneqd |
⊢ ( 𝜑 → ran ( iEdg ‘ 𝐺 ) = ran { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) |
18 |
|
rnsnopg |
⊢ ( 𝐴 ∈ 𝑋 → ran { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } = { { 𝐵 , 𝐶 } } ) |
19 |
2 18
|
syl |
⊢ ( 𝜑 → ran { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } = { { 𝐵 , 𝐶 } } ) |
20 |
16 17 19
|
3eqtrd |
⊢ ( 𝜑 → ( Edg ‘ 𝐺 ) = { { 𝐵 , 𝐶 } } ) |
21 |
20
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑥 ) = 2 ↔ ∀ 𝑥 ∈ { { 𝐵 , 𝐶 } } ( ♯ ‘ 𝑥 ) = 2 ) ) |
22 |
14 21
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑥 ) = 2 ) |
23 |
|
usgruspgrb |
⊢ ( 𝐺 ∈ USGraph ↔ ( 𝐺 ∈ USPGraph ∧ ∀ 𝑥 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑥 ) = 2 ) ) |
24 |
7 22 23
|
sylanbrc |
⊢ ( 𝜑 → 𝐺 ∈ USGraph ) |