Metamath Proof Explorer


Theorem usgr1eop

Description: A simple graph with (at least) two different vertices and one edge. If the two vertices were not different, the edge would be a loop. (Contributed by Alexander van der Vekens, 10-Aug-2017) (Revised by AV, 18-Oct-2020)

Ref Expression
Assertion usgr1eop ( ( ( 𝑉𝑊𝐴𝑋 ) ∧ ( 𝐵𝑉𝐶𝑉 ) ) → ( 𝐵𝐶 → ⟨ 𝑉 , { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ⟩ ∈ USGraph ) )

Proof

Step Hyp Ref Expression
1 eqid ( Vtx ‘ ⟨ 𝑉 , { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ⟩ ) = ( Vtx ‘ ⟨ 𝑉 , { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ⟩ )
2 simpllr ( ( ( ( 𝑉𝑊𝐴𝑋 ) ∧ ( 𝐵𝑉𝐶𝑉 ) ) ∧ 𝐵𝐶 ) → 𝐴𝑋 )
3 simplrl ( ( ( ( 𝑉𝑊𝐴𝑋 ) ∧ ( 𝐵𝑉𝐶𝑉 ) ) ∧ 𝐵𝐶 ) → 𝐵𝑉 )
4 simpl ( ( 𝑉𝑊𝐴𝑋 ) → 𝑉𝑊 )
5 4 adantr ( ( ( 𝑉𝑊𝐴𝑋 ) ∧ ( 𝐵𝑉𝐶𝑉 ) ) → 𝑉𝑊 )
6 snex { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ∈ V
7 6 a1i ( 𝐵𝐶 → { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ∈ V )
8 opvtxfv ( ( 𝑉𝑊 ∧ { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ∈ V ) → ( Vtx ‘ ⟨ 𝑉 , { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ⟩ ) = 𝑉 )
9 5 7 8 syl2an ( ( ( ( 𝑉𝑊𝐴𝑋 ) ∧ ( 𝐵𝑉𝐶𝑉 ) ) ∧ 𝐵𝐶 ) → ( Vtx ‘ ⟨ 𝑉 , { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ⟩ ) = 𝑉 )
10 3 9 eleqtrrd ( ( ( ( 𝑉𝑊𝐴𝑋 ) ∧ ( 𝐵𝑉𝐶𝑉 ) ) ∧ 𝐵𝐶 ) → 𝐵 ∈ ( Vtx ‘ ⟨ 𝑉 , { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ⟩ ) )
11 simprr ( ( ( 𝑉𝑊𝐴𝑋 ) ∧ ( 𝐵𝑉𝐶𝑉 ) ) → 𝐶𝑉 )
12 6 a1i ( ( 𝐵𝑉𝐶𝑉 ) → { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ∈ V )
13 4 12 8 syl2an ( ( ( 𝑉𝑊𝐴𝑋 ) ∧ ( 𝐵𝑉𝐶𝑉 ) ) → ( Vtx ‘ ⟨ 𝑉 , { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ⟩ ) = 𝑉 )
14 11 13 eleqtrrd ( ( ( 𝑉𝑊𝐴𝑋 ) ∧ ( 𝐵𝑉𝐶𝑉 ) ) → 𝐶 ∈ ( Vtx ‘ ⟨ 𝑉 , { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ⟩ ) )
15 14 adantr ( ( ( ( 𝑉𝑊𝐴𝑋 ) ∧ ( 𝐵𝑉𝐶𝑉 ) ) ∧ 𝐵𝐶 ) → 𝐶 ∈ ( Vtx ‘ ⟨ 𝑉 , { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ⟩ ) )
16 opiedgfv ( ( 𝑉𝑊 ∧ { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ∈ V ) → ( iEdg ‘ ⟨ 𝑉 , { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ⟩ ) = { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } )
17 5 7 16 syl2an ( ( ( ( 𝑉𝑊𝐴𝑋 ) ∧ ( 𝐵𝑉𝐶𝑉 ) ) ∧ 𝐵𝐶 ) → ( iEdg ‘ ⟨ 𝑉 , { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ⟩ ) = { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } )
18 simpr ( ( ( ( 𝑉𝑊𝐴𝑋 ) ∧ ( 𝐵𝑉𝐶𝑉 ) ) ∧ 𝐵𝐶 ) → 𝐵𝐶 )
19 1 2 10 15 17 18 usgr1e ( ( ( ( 𝑉𝑊𝐴𝑋 ) ∧ ( 𝐵𝑉𝐶𝑉 ) ) ∧ 𝐵𝐶 ) → ⟨ 𝑉 , { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ⟩ ∈ USGraph )
20 19 ex ( ( ( 𝑉𝑊𝐴𝑋 ) ∧ ( 𝐵𝑉𝐶𝑉 ) ) → ( 𝐵𝐶 → ⟨ 𝑉 , { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ⟩ ∈ USGraph ) )